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Abstract—In source code search, a common information-
seeking strategy involves providing a short initial query with
a broad meaning, and then iteratively refining the query using
terms gleaned from the results of subsequent searches. This strat-
egy requires programmers to spend time reading search results
that are irrelevant to their development needs. In contrast, when
programmers seek information from other humans, they typically
refine queries by asking and answering clarifying questions.
Clarifying questions have been shown to benefit general-purpose
search engines, but have not been examined in the context of code
search. We present a method for generating natural-sounding
clarifying questions using information extracted from function
names and comments. Our method outperforms a keyword-based
refinement method in synthetic and human evaluations.

Index Terms—source code search, code retrieval, clarifying
questions, query refinement, software maintenance

I. INTRODUCTION

Source code search (SCS) engines are systems that return
lists of source code fragments that are relevant to user-
provided search queries [1]. Programmers use SCS engines
during software maintenance for feature location, code reuse,
bug triage, and more [2]. However, programmers often fail to
find the information they need with a single search [3]. Search
issues can be caused by a mismatch between the concepts and
terms humans use to describe programming tasks, and those
that search engines associate with relevant code [4]–[6].

When an initial search is unsuccessful, programmers can
perform query refinement, which refers to the process of
modifying a search query in order to retrieve more-relevant
results. Over the course of a search session, programmers
use information gleaned from previous search results to refine
subsequent queries [3]. Many source code search engines offer
features to improve the query refinement process, such as
suggesting relevant keywords [7].

By contrast, when programmers seek information from other
humans, they typically refine queries by asking and answering
clarifying questions [8]–[10]. Clarifying questions (CQs) are
questions intended to confirm or elicit information about some
aspect of a query [11]. If a novice programmer were to ask
an expert programmer for a function to “convert a float”, the
expert would be uncertain whether to suggest a function that,
e.g., converts a float to an int, converts a float to a string, or
converts another data type to a float. By asking a clarifying
question such as “Would you like to convert a float to an int
or a string?” or “Would you like to convert a float, or convert

something to a float?”, the expert would then be able to suggest
code implementing the correct functionality.

An emerging trend in software engineering literature is the
idea that tool support should emulate the kinds of support of-
fered by human programmers [12]–[15]; in particular, leading
researchers have championed technology to help programmers
better express their information needs in search queries [16].
Meanwhile, a growing body of work supports the use of CQs
for query refinement across a broad range of domains [11],
including software engineering [14].

Nevertheless, clarifying questions remain understudied in
the context of source code search. The more-general problem
of query refinement in SCS has been studied extensively by
Hill et al. [17], Wang et al. [18], Treude et al. [19], and
Martie et al. [7]. Most existing approaches to query refinement
rely on GUI elements (such as drop down menus or lists
of tags), which are able to present numerous options for
refinement simultaneously. By contrast, a CQ is communicated
via natural language and must target a narrow aspect of the
user’s query to clarify [20]. The challenge is that there is no
clear way to identify potentially-relevant aspects of a SCS
query or select which aspect to ask about.

In this paper, we propose an approach to interactively refine
SCS queries using clarifying questions. Our approach discerns
relevant aspects of a SCS query from the similarities and
differences between the search results that query produces.
We divide our approach into three components: 1) Identifying
potentially ambiguous aspects of a code search query, 2)
Selecting a query aspect to inquire about and generating a
grammatically-appropriate CQ, and 3) Reranking the search
results based on the user’s answer.

Our evaluation methodology is twofold: First, we perform
a synthetic evaluation using the CodeSearchNet [21] dataset,
which contains relevance ratings for code search results. This
evaluation demonstrates that our approach quickly improves
the rankings of relevant results. Second, we perform intrinsic
and extrinsic human studies. We hire 10 programmers to rate
the quality of CQs generated by our approach, and we hire
12 programmers to complete code search tasks aided by a
CQ query refinement engine. We find that CQs reduce search
duration compared to a keyword recommendation baseline.

To promote reproducibility, we release all relevant code and
data via an online appendix (see Section V-F).



II. BACKGROUND AND RELATED WORK

A. Clarifying Questions for Query Refinement

Clarifying questions can help information-retrieval (IR)
systems resolve ambiguous queries in one of two ways: by
confirming the system’s interpretation of the user’s informa-
tion need (e.g., “is this what you are searching for?”), or by
eliciting a missing piece of information (e.g., “which of these
are you searching for?”) [22]–[27].

A growing body of evidence indicates that these questions
can improve user experience in IR systems; for instance,
Bing users reported higher levels of confidence in their search
results after answering CQs to refine their queries [24]. Users
also have high rates of engagement with CQs [23], particularly
compared to query suggestions that are not formatted as
questions [24]. Other studies have observed CQs information-
seeking conversations among programmers [10], [28], [29].
Gao et al. [30] analyzed over 2M posts on technical Q/A sites;
they found that a large number of comments on posts contain
CQs, and that posts with CQs were more likely to receive a
correct answer than those without.

Despite these observations, few query refinement ap-
proaches in software engineering literature actually attempt to
generate CQs. A key obstacle is that methods to generate CQs
in broader domains rely on data that are not readily available
for SCS. They typically work by identifying query aspects
and query facets to enquire about [31]. A query aspect is a
word or phrase describing a distinct information need relevant
to a query; for example, given the query “JPEG image”, one
aspect could be ways to process JPEG. A query facet is a set
of terms sharing a semantic relationship to a query aspect; the
facet corresponding to the ways to process JPEG aspect could
include {convert, rotate, resize}. A more specific aspect would
be image types to which JPEG can be converted, with the facet
{PNG, GIF, TIFF}. Those facet terms might also apply to the
aspect image types that can be converted to JPEG.

Aspects and facets serve as logical categories and options
for query refinement; furthermore, because they are defined by
semantic roles, they can be used to generate grammatically-
correct CQs [31]. For instance, the aspect image types to which
JPEG can be converted could produce a question confirming
the user’s information need: “Do you want to convert a JPEG
to a different image type?”. Or, it could elicit a missing facet
value for that aspect: “To which image type would you like
to convert a JPEG? a) PNG, b) GIF, c)TIFF.”

The main challenge for SCS is that these query aspects and
facets are not known in advance [32]. Methods exist to extract
query aspects and facets dynamically for general-purpose web
search queries using a) reformulation data derived from query
stream mining [24], or b) semantic patterns found in the
search results themselves [31]. The former approach requires
a volume of reformulation data that is not available for SCS.
The latter approach is more feasible, but must account for the
fact that there may be limited quantities of natural language
text associated with code snippets. A method for generating
clarifying questions for SCS needs to identify relevant query

TABLE I
SELECTION OF RELATED WORK IN QUERY REFINEMENT FOR SEARCH

TASKS IN SOFTWARE ENGINEERING. R=RELEVANCE FEEDBACK-BASED,
F=FACET-BASED, C=CONCEPT-BASED, T=TASK-BASED. THE NL

COLUMN INDICATES METHODS WITH A NATURAL LANGUAGE INTERFACE.

Project Year Domain Method NL
Gu et al [32] 2004 API F X

Shepherd et al [33] 2007 Code T
Gay et al. [34] 2009 Code R

Eisengerb et al [35] 2010 API F
Hill et al [36] 2011 Code T

Roldan-Vega et al [37] 2013 Code C, T
Wang et al [18] 2014 Code R
Treude et al [19] 2014 API C, T
Martie et al [7] 2017 Code F, C

Li et al [38] 2018 API C
Sivaraman et al [39] 2019 Code R

Zhang et al [14] 2020 Web F X
Xie et al [40] 2020 API T

Eberhart and McMillan [13] 2021 API C X

aspects and facets, select ones that will allow for meaningful
clarification, create a natural language question, and use the
answer to improve the search results. To inform our approach,
we consider other query refinement methods for SCS.

B. Query Refinement in Software Engineering

Table I summarizes key related work in query refinement for
information retrieval in software engineering. We focus on four
categories: relevance feedback-based, facet-based, concept-
based, and task-based methods.

Relevance feedback-based methods simply ask users to rate
individual search results as relevant or irrelevant. Gay et
al. [34] and Wang et al. [18] implement relevance feedback
using the Rocchio algorithm [41] to update a vector represen-
tation of the search query and rerank the results.

Facet-based methods let users filter the search results by
selecting facet values for predefined query aspects. In SCS,
these aspects are limited to explicitly-defined properties of the
source code (e.g., return type, parameter types, parent class).
Zhang et al. [14] proposed a facet-based method to generate
targeted clarifying questions for StackOverflow post retrieval.
However, this method relied on existing technical tags that SO
users had assigned to the posts, and required the authors to
manually identify 20 query aspects and categorize over 3700
tags into corresponding facets.

Concept-based methods overcome these limitations by ex-
tracting discriminative features from the search results. The
simplest concept-based methods are keyword recommendation
algorithms. Poshyvanyk and Marcus [42] use Latent Semantic
Indexing (LSI) to find important keywords for a set of code
snippets; they then use formal concept analysis (FCA) to let
users iteratively filter their searches with increasingly-specific
keywords. Other methods extract certain syntactic patterns
from source code or documentation to recommend entire noun
phrases (e.g., “JPEG image”) [7], [19], [37].

Task-based methods extend this idea to verb phrases (e.g.,
“convert JPEG image to PNG”), enabling users to spec-
ify more-complex types of functionality. We refer to these



Fig. 1. Overview of the ZaCQ method for natural language query refinement.

functionality verb phrases as development tasks, or simply
tasks [19]. Shepherd et al. [33] first developed an approach to
use verbs and direct objects extracted from function identifiers
and comments for interactive query reformulation. Hill et
al. [36] presented a subsequent technique to generate tasks
comprising verb, noun, and prepositional phrases from code
snippets, and built a code navigation tool based on the resultant
semantic hierarchies. Treude et al. [19] developed a technique
to extract the same task phrases from API documentation by
searching for specific syntactic patterns.

We observe that task phrases convey the similarities and
differences among code snippets by way of the same structured
semantic relationships that connect aspects and facets. Our
approach takes advantage of this property to dynamically
extract aspects and facets for clarifying question generation.

III. APPROACH

This section presents our approach: the Zero-aspect Clari-
fying Question (ZaCQ) system. ZaCQ is a natural language
query refinement engine that works alongside a standard SCS
engine. It targets the scenario where a SCS engine retrieves
one or more results that satisfy a user’s information need,
but ranks them below other, less relevant results. Given a
SCS query and results, ZaCQ generates a targeted clarifying
question and provides options for refinement. Importantly,
ZaCQ does not rely on predefined query aspects; instead, it
derives potentially-relevant aspects and corresponding facets
from tasks associated with the search results. Over multiple
rounds of refinement, ZaCQ identifies a single development
task relevant to the user’s information need.

A. Overview

Figure 1 presents a high-level overview of our approach,
initiated by the user in the upper-left corner. The white box
to the right of the user represents a standard SCS engine. The
user provides a text query to the SCS engine, which produces a
ranked list of the top-k most-relevant functions from a source
code repository. These results serve as the input to ZaCQ.

First, ZaCQ uses natural language processing techniques to
extract tasks from the query and search results (Section III-B).

Second, ZaCQ generates a clarifying question based on the
extracted tasks (Section III-C). In order to create a question
targeting an unclear aspect of the user’s information need, it
attempts to infer probable task attributes (e.g., common actions
or objects) from the query and results. It then selects a salient
query aspect to enquire about – either by seeking confirmation
that it is relevant to the user, or eliciting a value from the
corresponding facet. Based on the chosen aspect/facet, ZaCQ
applies an appropriate template to create a CQ.

Third, ZaCQ presents the search results, CQ, and refinement
options. The user may select an option to refine his/her query.
ZaCQ creates an updated query representation based on the
user’s selection, which it uses to rerank the search results
(Section III-D). If aspects of the user’s information need are
still unclear, the process repeats, and the system generates a
new CQ targeting a different query aspect.

B. Task Extraction

ZaCQ begins by generating tasks associated with a user
query q and the corresponding list of search results R. A task t
is represented as a data structure with string values for up to six
syntactical roles: a verb (V), a direct object modifier (DOM),
a direct object (DO), a preposition (P), a prepositional object
modifier (POM), and a prepositional object (PO). A value for
a particular syntactic role s is referred to as a task attribute
ts. Some attributes may be missing, but each task must have
an value for V and either a DO value or P and PO values.

We extract tasks from q and R using the method published
by Treude et al. [19]. We refer readers to the original paper for
algorithmic details, and to our repository (see Section V-F) for
implementation details; here, we briefly summarize the method
and adaptations made for our approach.

1) Preprocessing: For each function in R, we attempt to
extract tasks from the function name and comment (if there is
one). We split camelcase and snakecase function names into



separate tokens and prepend them to the comment string with
a period. We then preprocess the comment, adapting the steps
used by Treude et al. for docstring-specific text formatting.

2) Dependency Parsing: We use spaCy [43] to parse
syntactic dependencies. Extracting a task involves following
specific dependencies and recording tokens in certain syntactic
roles. All tasks start with a verb; we follow dependencies to
find values for DO, P, and PO roles, and then continue parsing
from objects to find DOM/POM modifiers. One modification
we make is to follow prepositional dependencies on objects
denoting collections of elements (e.g. “list of ints”); we append
these phrases to the corresponding tDO or tPO strings.

3) Postprocessing: Like Treude et al., we filter out tasks
with attributes that are too generic to make for valuable
clarification targets. We filter out a list of generic nouns,
which including generic programming terms (e.g., “parame-
ter”, “function”), as well as a small list of generic verbs (e.g.,
“take”, “be”, “do”, “have”).

Using this approach, we attempt to extract a task from q,
and as many tasks as possible from each function in R. We
store tasks extracted from R in a task table T , where each row
corresponds to a single task for a single result.

C. Clarifying Question Generation

Next, we use the task table T and user query q to generate
a natural language CQ targeting a particular query aspect a.
We define an aspect as a target syntactic role s given a set of
defined task attributes d; e.g., the aspect image types to which
JPEG can be converted would be represented as (s=POM,
d={V=convert, DO=jpeg, P=to, PO=image type}). Because
query aspects are not known in advance, we use the tasks
in T to identify potential aspects. The set of all query aspects
Aq is defined as Aq = {(s, d) | s ∈ Sd, d ∈ D}, where D is
the set of all subsets of task attributes for each task in T and
Sd is the set of all syntactic targets for d.

Possible syntactic targets include the six syntactic roles that
define tasks, as well as three special types: 1) object (O), which
targets a DO or PO, 2) object modifier (OM), which targets
a DOM or POM, and 3) object role (OR), which targets a
minimal verb phrase including a V and either a DO or a P
and PO. The O and OM types enable ZaCQ to enquire about
relevant objects without concern for the specific syntactic roles
they play. The OR type allows ZaCQ to distinguish whether
an O attribute serves as a DO or a PO.

We specify a set of rules to determine Sd for a given d. The
purpose of these rules is to avoid asking users confusing or
difficult CQs; e.g., when d is empty, a CQ should not elicit a
preposition from the user. The rules are as follows:

1: if d = ∅ then Sd ← {V,O}
2: else if V 6∈ d.roles then Sd ← {OM,OR}
3: else Sd ← {DO,P,PO} end if
4: if DO ∈ d.roles then Sd ← Sd ∪ {DOM} end if
5: if PO ∈ d.roles then Sd ← Sd ∪ {POM} end if
6: Sd ← {Sd \ d.roles}

ZaCQ can generate two kinds of CQs for an aspect: CQs
confirming the aspect’s relevance to the user’s information
need, and CQs eliciting a value for the aspect’s syntactic target
s. When eliciting a value, ZaCQ presents up to n options from
the corresponding query facet fa. The facet comprises the set
of unique ts attributes in Td, where Td = {t ∈ T | d ⊆ t}.
The type of CQ generated depends on the number of options
presented: ≤ 1→ confirmation, ≥ 2→ elicitation.

In order to select an appropriate query aspect/facet for a
CQ, ZaCQ follows a hand-crafted refinement strategy. First,
ZaCQ chooses a set of defined attributes d for a query aspect.
A cautious refinement strategy would be to use a d comprising
only the attributes that the user had previously accepted.
However, this may not be the most efficient strategy, as it can
lead to ZaCQ explicitly clarifying attributes that should be
obvious in context, e.g. an attribute that appeared in the task
extracted from the user query, or one that appears in tasks
in the majority of search results. ZaCQ balances caution and
efficiency by inferring task attributes from T and q.

1) Attribute Inference: The goal of attribute inference is to
populate d with attributes that are likely to be relevant to the
user’s information need. We use the frequency of an attribute
in Td as a proxy for relevance; e.g., an attribute that appears
in tasks for 6 functions is considered twice as relevant as one
that appears in 3 functions.

To infer attributes, ZaCQ first sets d equal to the set of
previously-accepted attributes and gets Sd. It then considers
attributes in the query facet for each candidate aspect. If any
of the attributes also appear in the task extracted from q, that
attribute is inferred. Otherwise, if the most-common attribute
meets a minimum support and confidence threshold (specified
as hyperparameters), it is inferred. If an attribute is inferred,
ZaCQ adds it to d and repeats the process for the new Sd.

2) Aspect/Facet Selection: Next, ZaCQ uses a greedy al-
gorithm to select a query aspect a and facet fa to ask about.
For a, ZaCQ selects the syntactic role s in Sd that has the
single most-frequent attribute in Td. It then selects the top-n
most-common attributes in fa to present as refinement options.

3) Question Templating: Finally, we apply a natural lan-
guage CQ template to the selected aspect/facet. We define 5
templates for different syntactic targets:

T1) “Are you interested in [verb phrase]?”
T2) “Are you looking for [object phrase]?”
T3) “What kind of [object phrase] are you interested in [verb

phrase/none]?”
T4) “How do you want to [verb phrase]?”
T5) “Found [#] items related to [object/verb phrase]. Would

you like to see them first?”

In elicitation questions, the target syntactical role is replaced
with “any of the following”. CQs for aspects targeting V, DO,
or PO use T1; O, DO, and PO use T2; OM, DOM, and POM
use T3; and P uses T4. Most confirmation questions use T1
or T2; T5 is a special case for confirming attributes inferred
directly from the task extracted from q.



D. Result Reranking

Users may respond to elicitation CQs by selecting an option
or “None.” For confirmation CQs, users may select “Yes”
or “No.” ZaCQ records all selected/confirmed attributes and
sets of rejected attributes, and identifies lists of candidate
functions (associated with at least one task that contains
all accepted attributes and no rejected sets of attribute) and
rejected functions (associated with no suitable tasks and at
least one task with attributes that were explicitly rejected).

We note that SCS results may not necessarily have com-
ments or function names from which tasks can be extracted,
but may still be relevant to a query; therefore, ZaCQ does
not directly filter non-candidates from the results. Instead,
it promotes all functions similar to candidate functions and
demotes those similar to rejected functions using the Rocchio
algorithm [41]. This mechanism works for most SCS engines
that embed functions and queries in the same vector space
by creating an updated vector representation of the query, and
then reranking each result by cosine similarity.

IV. SYNTHETIC EVALUATION

We performed a synthetic evaluation to determine whether
clarifying questions generated by the ZaCQ query refinement
engine are effective at improving the relevance rankings of
source code search results. The evaluation involved generating
CQs for sets of code search results, automatically selecting
answers using relevance data, and recording the improvement
observed in the overall ordering of the results.

We compared the ZaCQ method to two baseline methods: a
method that asks users to clarify only a verb and a direct
object (we refer to this method as V-DO), and a keyword
recommendation method (we refer to this method as KW).
A. Research Questions

We ask the following research questions (RQs):
RQ1 How well does ZaCQ perform after asking 1 or more

questions, compared to the default result ordering?
The purpose of RQ1 is to quantify ZaCQ’s reranking

performance and determine whether subsequent CQs after
the first are less effective. In [18], the authors found that
requesting additional relevance feedback for individual code
search results yielded diminishing returns, so it is valuable to
measure the utility of increasingly-specific CQs.
RQ2 How well does ZaCQ perform after asking 1 or more

questions, compared to the baseline methods?
The purpose of RQ2 is to compare ZaCQ to the V-DO

and KW baselines. While ZaCQ is designed to select query
aspects and refinement options for natural-sounding CQs, it is
also important that it be as efficient as the baselines.
B. Baselines

We compared the ZaCQ method to two baselines methods:
a Verb-Direct Object (V-DO) method and a Keyword (KW)
method. These represent existing concept-based and task-
based approaches to interactive query refinement for SCS.

The V-DO baseline is based on methods used by Shepherd et
al. [33] and Hill et al. [17]. It uses the same task extraction and

TABLE II
CODESEARCHNET DATASET USED FOR THE SYNTETHETIC EVALUATION.

Language Python Java PHP Ruby Javascript Go
# Functions 1.2M 1.6M 1.0M .2M 1.9M .7M

# Queries
in Evaluation 55 33 8 7 6 0

% Results
with Task(s) 57.9 63.3 66.2 48.8 34.0 N/A

architecture as ZaCQ, but it can only clarify values for the verb
and direct object syntactic roles. Furthermore, it always elicits
the two attributes in the same order (verb→ object); it cannot
infer attributes from the search results or decide to clarify
the object first. This baseline is intended to highlight whether
those features in ZaCQ (detailed query aspects, inference, and
decision-making) meaningfully improve its performance.

The KW baseline is based on the refinement method pro-
posed by Poshyvanyk and Marcus [42]. In brief, this method
uses Latent Semantic Indexing to identify 25 keywords in the
search results, and it uses Formal Concept Analysis to suggest
discriminative keywords over several rounds of refinement. As
users select keywords, they restrict the candidate functions and
subsequent keyword suggestions for that query.

We implement both baselines use the same relevance
feedback-based reranking algorithm as ZaCQ.1

C. Dataset

Our evaluation dataset consists of 1) a set of 99 programmer
queries, 2) SCS results for those queries, and 3) relevance
ratings for those search results, all of which were derived
from CodeSearchNet [21]. CodeSearchNet is a collection of
datasets and benchmarks for code search evaluation. The
datasets comprise about 6 million functions scraped from
GitHub repositories, 2.1 million of which are paired with a
comment. There are separate datasets for six programming
languages: Python, Javascript, Ruby, Go, Java, and PHP.

1) Queries: CodeSearchNet provides a set of 99 general
natural-language programming queries, such as “convert int to
string” and “k means clustering”. The queries were collected
from common Bing searches with high click-through rates to
code, and the CodeSearchNet authors manually filtered out
queries that clearly included specific technical keywords.

2) Search Results: We generated the top 50 search results
for each query and dataset using the state-of-the-art neural
bag-of-words model packaged with CodeSearchNet. This was
the best-performing model in the original CodeSearchNet
publication, and remains one of the best-performing models
on the CodeSearchNet benchmarks2. We chose to generate 50
results in line with the CodeSearchNet benchmarks.

3) Relevance Ratings: Each dataset includes relevance rat-
ings for SCS results for each of the 99 queries. To create
these ratings, the CodeSearchNet authors used a baseline code

1The KW baseline uses an adapted procedure to determine candidate and
rejected functions. When keywords are rejected, any functions associated
with those keywords are considered to be rejected. The set of candidates
comprises functions associated with any selected keywords, excluding any
rejects. Rejects are accounted for when suggesting subsequent keywords.

2https://wandb.ai/github/codesearchnet/benchmark/leaderboard



Query: convert integer to text
Language: Java
Method: ZaCQ

Initial Relevance-Annotated Results:
RANK SCORE EXTRACTED TASK PHRASES

3 1 [“convert text to integer”]
10 3 [“convert int to string value”, “display

text to screen”]
24 4 [“convert int to string value”]
Reciprocal Rank: .10 Average Precision: .09
NDCG: .77

Clarification Aspect: POM | V, DO, P, PO
Clarifying Question: What kind of value are you inter-

ested in converting int to?
Options: float, datetime, string, null
Selected Response: string

Reranked Relevance-Annotated Results:
RANK SCORE EXTRACTED TASK PHRASES

1 3 [“convert int to string value”, “display
text to screen”]

3 4 [“convert int to string value”]
41 1 [“convert text to integer”]
New Reciprocal Rank: 1 New Average Precision: .83
New NDCG: .94

Fig. 2. Synthetic query refinement demonstration.

search method to retrieve the top-10 results for each query for
each dataset; they then hired programmers to rate the relevance
of individual results to the corresponding query on a scale from
1 (least relevant) to 4 (most relevant). Not all results received
relevance ratings, and some results with ratings do not appear
in our dataset because we used a different retrieval method.

4) Filtering: Certain queries did not have an adequate
amount of relevance data for use in our synthetic evaluation.
Therefore, we filtered queries that didn’t meet all three of the
following criteria from the dataset:

• At least three search results have ratings
• At least one search result has a positive rating (3 or 4) and

contains both a task phrase (used by ZaCQ and V-DO)
and a keyword (used by KW)

• Rated search results are not already in the optimal order
(i.e., ratings do not decrease monotonically with ranking)

Table II presents the final composition of the dataset.

D. Methodology

Our methodology for answering the RQs involved using
each query refinement method (ZaCQ, V-DO, and KW) to
iteratively rerank the search results of each query in our
dataset. The synthetic refinement procedures were as follows:

1) Given a query and a list of search results, the refinement
method generated a set of up to 5 refinement options. For
ZaCQ and V-DO, these options were facet terms for a single

query aspect (e.g., a set of verbs, or a set of direct objects that
a certain verb acts upon). For KW, these were keywords.

2) We simulated a user’s response by selecting a relevant
option. An option was considered “relevant” if it and any
inferred attributes were associated with a result that was
relevant to the query (i.e., rated 3 or 4). If there were multiple
relevant options, the one associated with the fewest results
was chosen. An option was also available to indicate that no
relevant option was presented.

3) The simulated response was used to update the query
representation and rerank the results.

4) The refinement method generated a new set of options,
and repeated the process until no further refinement could
occur (i.e., until ZaCQ had clarified a complete task, V-DO
had clarified a V-DO pair, or KW had narrowed down a set
of functions with identical keywords).

Figure 2 illustrates the synthetic evaluation’s query re-
finement process with the ZaCQ method. Initially, the most
relevant search result is poorly-ranked. ZaCQ infers from
the search results that the user’s information need involves
converting an int to some kind of value, and chooses to
clarify what kind of value the user is interested in. “String” is
automatically selected in the evaluation because it is associated
with a relevant result. ZaCQ uses this information to rerank all
search results. The complete task phrase “convert int to string
value” has been clarified, so the evaluation concludes.

E. Metrics

We evaluated refinement performance using three common
metrics in code retrieval and refinement literature: 1) Mean
Reciprocal Rank (MRR), 2) Mean Average Precision (MAP),
and 3) Normalized Discounted Cumulative Gain (NDCG).

MRR is a metric for evaluating processes that produce lists
of possible responses to a query. It considers only the rank of
the first relevant (i.e., rated 3 or 4) result in a list, measuring
the average reciprocal rank (the multiplicative inverse of the
rank of the first relevant result) across a set of queries.

MAP is similar, but it looks at the ranks of all relevant
results in the list. In other words, it rewards a system for
ranking multiple relevant items highly.

NDCG considers the relevance ratings and ranks of all rated
results, such that highly ranked relevant results are rewarded,
while highly ranked irrelevant results are penalized (and vice
versa). Typically NDCG is calculated for all results in a list
of results. However, to account for the sparse relevance data
in the CodeSearchNet dataset, we calculate NDCG over the
subset of results with relevance ratings.

F. Results

Table III summarizes the results of the synthetic evaluation.
All three refinement methods (V-DO, KW, and ZaCQ) were
evaluated using the same set of queries and search results
from the CodeSearchNet dataset, and their performance was
measured in terms of MRR, MAP, and NDCG. The metrics
were calculated for the results of the initial query, and then re-
calculated after each round of refinement. We used grid search



TABLE III
RESULTS OF THE SYNTHETIC EVALUATION. THE BEST RESULTS FOR EACH

ROUND ARE BOLDED. RESULTS PRODUCED BY ZACQ HAVE ASTERISKS
FOR EACH BASELINE METHOD THEY SIGNIFICANTLY OUTPERFORM.

# Rounds RefinementMetric Refinement
Method 0 1 2 3 4 >=5
Keyword .800 .876 .915 .917 .917 .917

V-DO .800 .879 .914 .918 .918 .917NDCG
ZaCQ .800 .879 .892 .907 .906 .913

Keyword .590 .684 .872 .971 .971 .971
V-DO .590 .701 .898 .938 .943 .943MRR
ZaCQ .590 .765** .843 .925 .943 .967

Keyword .437 .494 .634 .692 .692 .692
V-DO .437 .503 .631 .666 .669 .670MAP
ZaCQ .437 .540** .593 .659 .673 .700*

to explore different hyperparameter configurations for each
method; Table III presents the results of the best-performing
configurations after each round of refinement.

1) RQ1 (Reranking Effectiveness): After asking a single
CQ, ZaCQ improved the MRR, MAP, and NDCG of the
search results by 24%, 30%, and 10%, respectively. These
improvements are statistically significant according to a two-
sided Wilcoxon signed-rank test (p-value < .05). Asking
additional CQs allowed for further improvement, though the
average improvements were attenuated. The greatest total
improvements (64% MRR, 60% MAP, and 14% NDCG) were
achieved after fully clarifying all queries.

2) RQ2 (Comparison to Baselines): Like ZaCQ, the V-
DO and KW baselines improved upon the initial ordering
of the search results. The greatest single-turn improvements
were seen in the first round of refinement, with subsequent
rounds yielding attenuated improvements. After one round of
refinement, ZaCQ significantly outperformed both baselines in
terms of MRR and MAP, and tied V-DO in terms of NDCG.
In subsequent rounds, both baseline methods significantly
outperformed ZaCQ in terms of all metrics. After about 4
rounds, ZaCQ started to catch up with the baselines, and when
all three methods are allowed to run to completion, ZaCQ did
not perform significantly worse than either of the baselines.

We attribute this pattern to ZaCQ’s ability to infer task
attributes. Consider the query “buffered file reader read text”
and the initial refinement options presented by each method:

Method Target Options
V-DO V [“read”, “parse”, “return”, “set”, “open”]
KW Keyword [“character”, “input”, “line”, “occur”, “stream”]

ZaCQ V, DO, P, PO [”read text from file”]

ZaCQ correctly inferred all four task attributes, allowing
the refinement to conclude after just one round. For the other
methods, additional refinement was necessary. ZaCQ inferred
attributes most frequently in the first round of refinement;
when successful, these inferences allowed ZaCQ to quickly
narrow down the set of candidate results, accounting for
improved first-round performance. In cases where ZaCQ’s
inferences were incorrect, the system had to spend additional
rounds establishing the correct attributes. The V-DO and
KW baselines lagged behind the first-round improvements of

ZaCQ, but achieved their greatest improvements sooner by
avoiding wasted rounds of inference.

The total improvement different methods achieved reflected
the degree to which they were able to narrow the list of
candidate results. ZaCQ was designed to clarify a complete
task phrase, comprising 6 syntactic roles. In the sets of 50
search results used for the evaluation, it was rare for multiple
results to share identical task phrases, meaning that ZaCQ was
often able to identify a single relevant function. The V-DO
baseline only clarified two semantic roles, allowing for more
irrelevant results to wind up in the final list of candidates. By
contrast, the KW baseline was able to narrow its candidate set
down to a single relevant function for most queries, allowing
it to achieve the highest final MRR.

G. Threats to Validity

As in any study, this evaluation carries a number of threats
to validity; we have taken steps to acknowledge and address
these threats where appropriate. The queries, search results,
and relevance scores used present threats to internal and
external validity. We mitigated these threats by choosing
a large, standard dataset for code search tasks with fairly
reliable relevance annotations (Cohen’s κ = 0.47). Other
threats include the selection of evaluation parameters. We
limited the number of refinement options to 5, emulating
Zamani et al. [24], and the number of keywords to 25, which
was the maximum number investigated by Poshyvanyk and
Marcus [42]. Selecting different parameters may have affected
the observed results. Reporting the results of only the best-
performing hyperparameter configurations after each round
of refinement may be seen as a threat to construct validity,
as that information is only available post hoc. We note that
it is valuable to be able to specifically target the highest
expected performance after n rounds, particularly for the first
round. Further research is necessary to dynamically optimize
hyperparameters throughout multiple rounds of refinement.

V. HUMAN STUDIES

We performed two human studies: a study to evaluate the
intrinsic quality of the clarifying questions generated using
the ZaCQ system, and a study of the extrinsic utility of CQs
to real programmers during code search tasks. In the intrinsic
study, we hired 10 annotators to rate the intrinsic quality of
CQs generated by ZaCQ. In the extrinsic study, we hired 12
programmers to complete code search tasks, assisted by either
ZaCQ or the Keyword recommendation baseline.

A. Research Questions

1) Intrinsic Study: For the intrinsic human study, we asked
the following research questions:
RQ3 Does ZaCQ generate meaningful questions?
RQ4 Does ZaCQ generate natural questions?
RQ5 Does ZaCQ generate grammatical questions?
RQ6 Does ZaCQ generate logical questions?
RQ7 Do users prefer clarifying questions generated by

ZaCQ over keyword recommendations?



The purpose of RQ3-RQ6 is to evaluate the intrinsic
properties that make for a “good” CQ. These quality metrics
are based on an analysis of CQs by Stoyanchev et al. [20].
“Meaningful” means that a CQ seeks to make a meaningful
distinction; “Natural” means that a CQ sounds like some-
thing a human might ask; “Grammatical” means that a CQ
is grammatically-correct; and “Logical” means that a CQ
logically targets a missing piece of information.

The purpose of RQ7 is to compare users’ first impressions
of CQs generated by ZaCQ to keyword recommendations.

2) Extrinsic Study: For the extrinsic study, we asked the
following research questions:
RQ8 Do users engage more with clarifying questions

generated by ZaCQ than keyword recommendations?
RQ9 Does ZaCQ help users find relevant results faster

than the Keyword baseline?
RQ10 Does ZaCQ help users feel more confident in their

search results than the Keyword baseline?
The purpose of RQ8 is to examine whether users are

more likely to engage with (i.e., click on) CQ-based or
keyword-based refinement options. Although the keyword-
based method can theoretically present a more discriminative
set of refinement options, we hypothesize that a user-friendly
natural-language interface will encourage more engagement

The purpose of RQ9 and RQ10 is to investigate the utility
of CQs generated by ZaCQ during code search. We examine
search duration and user confidence, as CQs have been shown
to improve both metrics in general-domain search [44].

B. Intrinsic Study Methodology

Our methodology to answer RQ3-RQ7 involved creating
a survey asking programmers to rate the CQs generated by
ZaCQ. As in the synthetic evaluation (see Section IV-C),
we used queries and search results from CodeSearchNet.
We generated CQs for all 99 CodeSearchNet queries, using
search results from the Java dataset. For each query, we
generated a single question with ZaCQ and KW; that is, we
did not examine subsequent questions after an initial round of
refinement. We chose to only look at the first question because
our synthetic evaluation found that the first question yielded
the greatest improvement in result reranking.

We hired 10 participants on the crowdsourcing website
Prolific.co to complete the survey. Participants were pre-
screened for English fluency. Because this survey did not
require participants to read or understand code, it fell in line
with literature tasking non-programmers with reading software
documentation [45]. Nevertheless, we limited the participant
pool to participants reporting experience with “Computer Pro-
gramming.” We also excluded participants who failed attention
check questions throughout the survey.

Survey participants were first shown task instructions and
examples of appropriate ratings. After completing a training
exercise, they were brought to the main rating interface, which
consisted of four elements: first, a text box displaying a
programmer query and the corresponding CQ; second, a box

Fig. 3. Average quality ratings for ZaCQ clarifying questions in the intrinsic
human study.

containing four input fields asking the user to rate the CQ on a
1-5 Likert scale in terms the four quality criteria; third, a text
box introducing the refinement prompt and options generated
by the KW baseline; and finally, an input field asking the
participant to indicate which refinement method they preferred.

C. Intrinsic Study Results

We collected 10 user surveys rating 99 CQs generated
by ZaCQ. We analyzed interrater reliability using intraclass
correlation (ICC(3,k)). Reliability was fair to good for all
quality attributes; the “Logical” and “Meaningful” qualities
saw the highest levels of agreement (r=.74, 95% CI [.65, .81]
and r=.76, 95% CI [.68, .82], respectively), while the “Natural”
and “Grammatical” qualities had lower agreement (r=.41, 95%
CI [.22, .57] and r=.51, 95% CI [.35, .64]).

Figure 3 summarizes the quality ratings that participants
provided, addressing RQ3-RQ6. For most questions, the
“Natural” and “Correct” qualities were rated highly; this
consistency is not surprising, given that the questions were
generated using a limited set of hand-crafted templates. The
“Meaningful” and “Logical” qualities saw more variation from
question to question. Table IV shows the CQs that received the
highest- and lowest- average ratings for each quality metric.
In general, confirmation questions (i.e., questions confirming
inferred task attributes) were highly rated across all 4 metrics,
while questions in which the system failed to extract task
attributes from the user’s query and those where semantic roles
in the options appeared inconsistent received lower ratings.

To answer RQ7, we looked at how frequently participants
preferred CQs to KW recommendations. Overall, 63% of all
ratings indicated a preference for the CQ, and a majority of
participants preferred the CQ for 63% of queries. Confirmation
questions were the most preferred (70%), while elicitation
questions targeting verbs were the least preferred (54%).

D. Extrinsic Study Methodology

To answer RQ8-RQ10, we ran an experiment in which
programmers completed a series of code search tasks aided
by either the KW or the ZaCQ refinement method. We
recruited 12 programmers to participate in the experiment.
All participants were Java programmers with 4 to 17 years
of general programming experience (average 8.8± 4.2).



TABLE IV
THE HIGHEST- AND LOWEST-RATED CLARIFYING QUESTIONS IN THE INTRINSIC EVALUATION.

Metric Highest-Rated CQ Lowest-Rated CQ
Query:“convert string to number” Query:“find int in string”

Meaningful
CQ: Found 1 function that specifically mentions converting string
to number. Would you like to see it first? (Avg. score = 4.6)

CQ:Are you interested in finding in any of the following: half of
the node, range, range start, right, or text? (Avg. score = 1.7)

Query:“convert string to number” Query:“encode url”
Natural

CQ: Found 1 function that specifically mentions converting string
to number. Would you like to see it first? (Avg. score = 4.7)

CQ: Are you looking for any of the following: characters, method,
string, unsupportedencodingexception, or url? (Avg. score = 3.1)

Query:“unzipping large files” Query:“encode url”
Grammatical

CQ: Are you interested in doing any of the following: copying
files, extracting files, handling files, overwriting files, or reading
files? (Avg. score = 4.6)

CQ: Are you looking for any of the following: characters, method,
string, unsupportedencodingexception, or url? (Avg. score = 3.1)

Query:“priority queue” Query:“find int in string”
Logical

CQ: Are you interested in doing any of the following: changing
priority, getting priority, removing priority, returning priority, or
setting priority? (Avg. score = 4.6)

CQ: Are you interested in finding in any of the following: half of
the node, range, range start, right, or text? (Avg. score = 1.6)

We designed a custom search interface (Figure 4) for the
CodeSearchNet Java dataset (see Section IV-C) using neural
bag-of-words search method. When users submit queries, the
system retrieves the top 50 search results (displayed across 5
pages of 10 results each). The system also generates a query
refinement prompt and options to display to the user. User
interactions with the interface (e.g., queries, changing page,
selecting refinement options) are logged in a database.

We gave programmers 8 code search tasks created by
Martie et al. [7] for evaluating query refinement techniques
for code search. Each task consists of a scenario, like “You
are building a sketching application” and a request, like “Find
4 snippets of Java source code that you think will help.”
We instructed programmers to use the interface to search as
though they were actually programming a solution. When they
found a function that they would want to use/replicate, we
instructed them to press a “Submit” button. The participant
would then provide confidence ratings from 1-5 indicating
1) how confident they felt that this function would correctly
address their needs, and 2) how confident they felt that they
had found the best available function for the task.

Half of the search tasks requested a single function, while

Fig. 4. User interface for the extrinsic study. Clarifying questions and potential
answers appear below the search bar.

the others request four. Additionally, half of the tasks requested
the user find functions implementing relevant algorithms/data
structure, while the rest requested any “helpful” functions. The
combinations of response number/type pairs comprised four
task categories of two tasks each.

Like Martie et al. [7], we used a mixed experimental design
in which each participant completed four tasks using KW and
four with ZaCQ. Specifically, each participant completed one
task in each task category using one refinement method, and
the other task in that category with the other method. We
assigned refinement methods to tasks such that each task-
refinement method pair was assigned to a unique set of 6
participants. As participants completed tasks, they alternated
between the KW treatment and the ZaCQ treatment. To
address ordering effects, half of the participants started with
ZaCQ and the other half started with KW. The order of tasks
within each treatment were randomized.

E. Extrinsic Study Results

To answer RQ8, we analyze how frequently individual
participants engaged with ZaCQ and KW. To answer RQ8

and RQ9, we consider the search duration and confidence
measures across all tasks and participants. Figures 5 and 6
summarize these results.

1) RQ8 (Engagement): The majority of participants en-
gaged with more CQs than keyword recommendations. Fig-
ure 6 shows the total number of times each user selected a
refinement option from the ZaCQ or KW interface across the
8 code search tasks. Overall, 75% of the participants selected
more responses to CQs than keywords. Participants selected an
average of 7.2 CQ answers and 5.2 keywords over the course
of the study. Furthermore, the average engagement rate per
search query was .366 for ZaCQ and .191 for KW.

We observe that 4 of the 12 participants only refined a single
search query using either method. One of these participants
reported in the exit survey that they “often didn’t even read”
the refinement suggestions throughout the study, noting that
rewriting queries manually was “just how I do things.” Of the
8 participants who refined multiple queries, 7 of them engaged
with ZaCQ more than KW.



Fig. 5. �=KW, �=ZaCQ. Search duration and confidence ratings in the extrinsic human study.

2) RQ9 (Duration): We measured two metrics to evaluate
RQ9: the amount of time spent and the number of search
queries participants used to find each submitted function
(not counting time spent providing ratings/explanations). The
duration of search sessions varied greatly, the quickest taking
only 3 seconds and the longest 3 exceeding the 10 minute
time limit. Overall, we do not observe a significant difference
between the ZaCQ treatment and the KW treatment in terms
of the average time and number of queries (p > .05 for a
two-sample, two-tailed t-test).

We note that in two-thirds of all searches, participants did
not select any refinement options. To gauge the actual refine-
ment effectiveness, we analyze the subset of search sessions
in which participants selected at least one refinement option.
Of the 237 total search sessions, 35 were refined by keywords
and 49 were refined by CQs. We make two observations: first,
the time and number of queries used for searches involving
refinement were significantly higher than for searches with no
refinement (p < .01). Second, the time and number of queries
used for searches refined by CQs were significantly lower than
for those refined by keywords (p < .05).

These observations suggest that participants looked to the
refinement interface for assistance during difficult searches.
In that context, the shorter duration of searches refined by
CQs suggests that CQs helped resolve difficult searches more
efficiently than keyword recommendations.

3) RQ10 (Confidence): We had participants rate two mea-
sures of search confidence: confidence that an answer was cor-
rect, and confidence that an answer was the best available. As
with search duration, we do not observe a significant difference
in either confidence metric between the two treatments when
averaging over all search sessions. The subset of searches that
involved refinement have lower confidence scores than for
the subset with no refinement; however, we do not observe
a significant difference in search confidence between the two
treatments for the refined subset (p > .05).

F. Threats to Validity

Each human study carries threats to validity. For the intrinsic
study, the selection of evaluation queries and search results
present a threat to external validity; in particular, search results
for other programming languages may have produced higher-
or lower-quality questions. The selection of participants is
another core threat; we aimed to reduce the threat by recruiting
from a reliable crowdsourcing service [46] and including
attention checks to filter low-quality participants.

Fig. 6. Engagement in the extrinsic human study. The number above each
bar indicates the number of searches in which refinement took place.

For the external study, the selection of search tasks is a
threat that may reduce generalizability. Individual differences
among programmers play a role in their search behavior and
preferences. We attempted to distribute the bias of individual
differences by assigning a different set of programmers to
complete each task with each treatment. Nevertheless, dif-
ferences between programmers and tasks may bias the result
averages, particularly for the subset of searches that had been
refined using the experimental methods.

VI. CONCLUSION

We have presented an approach to refine source code search
queries using natural language clarifying questions. Prior CQ
generation methods rely on data that is not readily available for
SCS. Our approach uses a task extraction algorithm to identify
query aspects, and then follows a rule-based procedure for
question generation. We use a feedback relevance algorithm
to elevate relevant search results, including those for which
descriptive task phrases are not extracted. We performed a
synthetic study and two human studies to evaluate our method.
It generally creates useful and natural-sounding clarifying
questions; however, the inflexible rules can sometimes lead to
stilted-sounding questions or repetitive options for refinement.

Overall, we believe that CQs will play a significant role in
intelligent tools for developer support. Future work should aim
to incorporate more sophisticated models for result salience
in the aspect inference/selection process and experiment with
different result reranking algorithms.

For reproducibility, we make all source code and experi-
mental material available online:

https://anonymous.4open.science/r/ZaCQ-A3BF/

https://anonymous.4open.science/r/ZaCQ-A3BF/
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