IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 1

A Wizard of Oz Study Simulating APIl Usage
Dialogues with a Virtual Assistant

Zachary Eberhart, Aakash Bansal, and Collin McMillan

Abstract—Virtual Assistant technology is rapidly proliferating to improve productivity in a variety of tasks. While several virtual
assistants for everyday tasks are well-known (e.g., Siri, Cortana, Alexa), assistants for specialty tasks such as software engineering are
rarer. One key reason software engineering assistants are rare is that very few experimental datasets are available and suitable for
training the Al that is the bedrock of current virtual assistants. In this paper, we present a set of Wizard of Oz experiments that we
designed to build a dataset for creating a virtual assistant. Our target is a hypothetical virtual assistant for helping programmers use
APIs. In our experiments, we recruited 30 professional programmers to complete programming tasks using two APIs. The
programmers interacted with a simulated virtual assistant for help — the programmers were not aware that the assistant was actually
operated by human experts. We then annotated the dialogue acts in the corpus along four dimensions: illocutionary intent, API
information type(s), backward-facing function, and traceability to specific API components. We observed a diverse range of interactions
that will facilitate the development of dialogue strategies for virtual assistants for APl usage.

Index Terms—Intelligent agents, Discourse, Software/Software Engineering, Wizard of Oz (WoZ), Virtual Assistants.

1 INTRODUCTION

Virtual assistants are software systems that interact with
human users via natural language and perform tasks at the
request of those users [1]. Virtual assistants for everyday
tasks (e.g., Cortana, Alexa, Siri) are proliferating after a
period of heavy investment — a confluence of sufficient
training data, advancements in artificial intelligence, and
consumer demand have fed rapid growth [2].

Many of the achievements of virtual assistants for every-
day tasks are beginning to be brought to specialty applica-
tions such as medicine [3] and education [4]. However, a key
observation is that these applications are quite specific (e.g.,
not education in general, but a specific type of geography
for a specific age group of students). The reason is that
data collected for one application is difficult to generalize to
other applications — a virtual assistant must master both the
language and the strategies humans use to move through
conversations, and this problem is simply too complex for
existing Al technologies to learn without detailed, specific
training data [5]. A relevant dataset must be collected and
annotated for every type of conversation in which a virtual
assistant needs to converse. For example, a virtual assistant
for everyday tasks would require different training data
to recommend a restaurant and to reserve a table at that
restaurant [6], [7].

Virtual assistants for software engineering tasks suffer
from the same hunger for data. Despite long-recognized

o The authors are with the Department of Computer Science and Engineer-
ing, University of Notre Dame, IN 46556.
E-mail: zeberhar, abansall, cmc@nd.edu

o This paper has supplementary downloadable multimedia material available
at https://github.com/ApizaCorpus/ApizaCorpus provided by the authors.
This includes materials related to the experimental design, experimental
results, and dialogue act annotations. This material is 1.3 MB in size.

Manuscript received — —; revised — —; accepted — —-. This work is
supported in part by the NSF CCF-1452959 and CCF-1717607 grants. Any
opinions, findings, and conclusions expressed herein are the authors’ and do
not necessarily reflect those of the sponsors.

demand for virtual assistants to help programmers [8],
[9], working relevant virtual assistant technology remains
something of a “holy grail”. Several research prototypes
have made significant advances (see Section 2.6), but a major
barrier to progress is a lack of well-understood, annotated
datasets that are specific to software engineering tasks. A
survey in 2015 by Serban et al. [10] found none related to SE
tasks, and since that time only one has been published to
our knowledge, targeting the task of bug repair [11].

One reason for the lack of suitable datasets is the in-
vestment cost necessary for experiments in numerous target
tasks, and a perceived disincentive in terms of publication
versus data and software artifacts [12]. A recent book by
Rieser and Lemon [13] provides clear guidance regarding
how to build dialogue systems for virtual assistants, with
particular focus on the design of experiments for data col-
lection. A major theme of the book is that, despite a percep-
tion that data collection experiments yield few immediate
research outcomes, in fact the experiments provide answers
to research questions about how people seek knowledge to
perform tasks. These answers are critical to the later design
of virtual assistants, in addition to the data produced. To
this end, Rieser and Lemon establish two first steps towards
building a virtual assistant: 1) conduct “Wizard of Oz”
experiments to collect simulated conversation data, and 2)
annotate every utterance in the conversations with dialogue
act types.

A Wizard of Oz experiment is one in which a virtual
agent is simulated. Participants interact with a virtual assis-
tant to complete a task, but they are unaware that the virtual
assistant is actually operated by a human “wizard”. The
deception is necessary because people communicate differ-
ently with machines than they do with other humans [14]
and our objective is to create data for a machine to learn
strategies to converse with humans. The key element of
these strategies are “dialogue acts”: a dialogue act is a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 2

spoken or written utterance that accomplishes a goal in a
conversation [15]. A conversation is composed of a series of
utterances taken by different speakers, and each utterance
functions as a dialogue act. For example, the utterance “tell
me how to find my classroom” is a dialogue act explicitly
requesting information, whereas “this is the wrong class-
room” is a statement that, depending on context, may imply
a request for information. A virtual assistant must be able to
recognize when a human is, e.g., requesting information and
generate an appropriate response, and to do that it relies on
training data in which humans have annotated the dialogue
acts in conversations.

At the same time, in software engineering, one task
that cries out for help from virtual assistants is API usage:
programmers trying to use an unfamiliar API to build a
new software program. The authors of APIs are often not
available to answer questions, and web support (e.g., Stack-
Overflow) is neither a guarantee nor immediately available,
which makes the rapid help a virtual assistant can provide
more valuable. As Robillard et al. [9] point out, API usage
is a high value target for virtual assistants due to the high
complexity of the task, and a tendency to need the same
information about different APIs [16], [17]. In other words,
programmers often have the similar kinds of questions
about different APIs (e.g., “Is there an API type that pro-
vides a given functionality?” or “How do I determine the
outcome of a method call?”), even if the tasks performed
by the APIs are not similar — the similarity of questions
makes API usage a good target for virtual assistants, since
the virtual assistants are likely to be able to learn what
programmers need to know.

There are many scenarios in which programmers could
benefit having a virtual assistant to assist with API usage. In
some cases, programmers may have limited access to tradi-
tional documentation; for instance, blind programmers rely
heavily on API documentation to understand the structure
of code [18], but they are limited to existing screen-reading
tools. These programmers may prefer to query a virtual
assistant for specific information, rather than navigate large
documents. Other user types, like children or novice pro-
grammers may find a virtual assistant more approachable
than traditional documentation. A virtual assistant may
also improve the usability of IDEs for mobile platforms
with limited screen space (e.g., smartphones) by enabling
programmers to find targeted answers to API questions
without navigating away from the editor.

In this paper, we conduct Wizard of Oz experiments
designed to lay a foundation for the creation of virtual
assistants for API usage. We hired 30 professional program-
mers to complete programming tasks with the help of a
“virtual assistant,” which was operated by a human wizard.
The tasks involved designing a program that met specified
objectives using an API (described in Section 3.2). The
programmers conversed with the virtual assistant, though
they were not aware that it was operated by a human. Each
programming session lasted approximately 90 minutes.

We then annotated the dialogue acts in all 30 con-
versations along four dimensions. We labeled illocutionary
dialogue act types by adapting the dialogue act annotation
scheme from the AMI conversation corpus [19], which con-
sists of 14 coarse-grained illocutionary types extracted from

simulated business meetings. We annotated domain-specific
API dialogue act types by adapting a taxonomy of API infor-
mation types by Maalej and Robillard [20], which consists
of 12 labels corresponding to domains of API knowledge.
We annotated the backward-facing function of each dialogue
act by adapting a set of labels provided by AMI scheme to
describe the relationships between utterances. Finally, we
annotated specific API components (i.e., methods, structs,
and variable names) that were referenced in each utterance
in order to observe the traceability between specific concepts
and the language used to discuss them. This multi-faceted
characterization of the corpus will enable downstream tasks
in the development of a virtual assistant for API usage.

This paper makes the following specific contributions to
the field of software engineering:

1) A corpus of 30 Wizard of Oz dialogues, comprising
44 hours of programming activity and including two
separate APIs.

2) The results of those programming sessions, including
programmers’ comments, ratings of the simulated vir-
tual assistant, and performance on the task sets.

3) Corpus annotations along 4 dimensions.

4) Several recommendations and considerations for future
virtual assistant developers.

2 BACKGROUND AND RELATED WORK

This section discusses background on the problem we target,
supporting technologies, and related work.

2.1 Problem Statement and Scope

The problem we target in this paper is that the compo-
sition and patterns of dialogue acts are not known for
conversations between programmers and virtual assistants
during API usage tasks. This problem is significant because
information about these dialogue acts must be known in
order to create lifelike, efficient dialogue strategies for vir-
tual assistants. The situation is a “chicken or egg” question
because in order to obtain the dialogue act structure, one
must have conversations between programmers and virtual
assistants, but to have a virtual assistant one must know
the dialogue act structure. Software engineering literature
does not describe dialogue acts for API usage conversations,
which impedes development of usable virtual assistants.

To that end, the scope of this paper encompasses the fol-
lowing activities: 1) conducting Wizard of Oz experiments
designed to promote programmer-wizard interactions re-
lated to API usage, 2) annotating the conversations with
multi-dimensional dialogue act types that are likely to be
useful for many downstream tasks, and 3) discussing the
key insights from these experiments and annotations that
will guide future development of dialogue strategies for
virtual assistants for API usage.

This scope is already quite extensive, so we note that
we do not yet attempt to create a working model of dia-
logue strategy (such as one based on reinforcement learn-
ing). To train and validate such a model, researchers must
create a simulated learning environment, compare various
policy-training approaches, and evaluate the system [13].
We also do not attempt to perform statistical analysis of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 3

factors affecting the performance of participants in the
experiments, as our experimental design promotes variety
in wizard-programmer interactions over carefully balanced
treatments, as described in the following section.

2.2 Wizard of Oz Experiments

A Wizard of Oz experiment is one in which a human (the
user) interacts with a computer interface that the human
believes is automated, but is in fact operated by another
person (the wizard) [14]. The purpose of a Wizard of Oz
experiment is to collect conversation data unbiased by the
niceties of human interaction; people interact with machines
differently than they do with other people [14]. These
unbiased conversation data are invaluable for kickstarting
the process of building an interactive dialogue system, as
they “deliver a more or less complete specification of the
system’s input/output behaviour” [21]. We direct readers
to a comprehensive survey by Riek et al. [22] for further
justification and examples of Wizard of Oz experiments.

In a Wizard of Oz experiment, researchers must provide
the participants with some specific scenario. A scenario is
“a task to solve whose solution requires the use of the
system, but where there does not exist one single correct
answer” [14]. A well-designed scenario promotes interac-
tion relevant to the simulated system [23]. To that end, it
is important for the scenario to place constraints on both
the user and the wizard. Such constraints may include
limitations on the resources available to the user, or the
types of responses the wizard can generate. Researchers
often provide the wizard with an interface that simplifies
and expedites the process of generating a response [24].

Rieser and Lemon provide an excellent summary of
the state-of-the-art in virtual assistant development in their
recent book [13]. In short, they explain that a highly-effective
method to kick start development of virtual assistants is to
conduct Wizard of Oz experiments to collect conversations
between humans and simulated virtual assistants (wizards).
The data from those experiments can then be used to design
a virtual assistant prototype via reinforcement learning (see
Section 2.3). Later, as more people interact with the virtual
assistant, real-world data can be collected. The process boils
down to collecting Wizard of Oz data and annotating the
dialogue acts in that data.

As Rieser and Lemon explain, Wizard of Oz experiments
designed to support dialogue system development must
strike a balance between promoting realistic interactions (i.e.
ones that cleanly demonstrate common patterns and behav-
ior) and covering a diverse range of interactions (i.e. ones that
demonstrate behavior in less-common circumstances). To
that end, experiments should be designed to target a narrow
task domain while not imposing extraneous restrictions on
participant behavior, in order to explore a broad range of
“intuitive” strategies employed by participants [13].

Data from Wizard of Oz experiments have a variety of
direct applications in the development of a virtual agent;
for instance, they can be used to improve a system’s nat-
ural language understanding capabilities. Many modern
natural language understanding frameworks (such as Alexa
Skills [25] or Xatkit [26]) require explicit samples of user
phrases that correspond to different dialogue acts; rather

than attempt to intuit the phrases that real users would
use, virtual assistant developers can extract real examples
directly from the Wizard of Oz data. Other approaches to
dialogue act classification use Wizard of Oz data to train
statistical models to generalize to unseen inputs [11], [27].
That said, the key advantage to the Wizard of Oz approach
described by Rieser and Lemon is that it enables researchers
to efficiently design optimal dialogue strategies for tasks in
domains where no prior data is available.

2.3 Dialogue Strategies

A dialogue strategy is the decision-making process that
a dialogue system follows at each step in a dialogue to
determine what to say next [28]. For instance, when a user
asks a question, a virtual assistant must decide whether
to immediately respond with an answer, or to first elicit
additional information from the user. A key observation
is that there is a difference between the strategy involved
in a conversation and the language used to implement that
strategy [5]. The language is expressed by the actual words
used to render an utterance, while the strategy is expressed
by the sequence of dialogue acts used. E.g., the language
“A: Hello. B: Hi. A: Where should we eat? B: At Joe's.”
versus the conversation flow/strategy: greeting, greeting,
suggestion-elicitation, suggestion.

In dialogue systems, complex strategies do not only
rely on the previous dialogue act; instead, they consider a
broader dialogue state (that is, the dialogue system’s inter-
nal representation of the dialogue), as well as any external
knowledge available to the virtual assistant, to determine an
appropriate response type. For an API usage task, a virtual
assistant’s internal dialogue state may include information
about API components the user has previously mentioned,
and its external knowledge would comprise information
about available API resources. Developers of virtual assis-
tants design dialogue strategies by defining what actions the
system will take given some dialogue state. These strategies
may be manually encoded or learned as statistical models.

Without prior conversational data, developers would
have no empirical basis from which to design dialogue
strategies for virtual assistants, and they would be forced
to rely on intuition and trial-and-error. Even with relevant
conversational data from a Wizard of Oz study, strategies
based on the behavior exhibited by wizards are suboptimal,
as wizards themselves are not expected to follow optimal
dialogue strategies. Unlike true virtual assistants, wizards
are unable to rapidly parse large knowledge databases, and
instead rely on available search tools and mental models
to determine what information may be valuable at a given
point in a dialogue. Different wizards should be expected to
use different dialogue strategies, informed by their domain-
specific expertise, interpersonal skills, and communication
styles. Even an individual wizard may experiment with
multiple dialogue strategies as he/she observes which ones
are more or less effective. Furthermore, methods that extract
strategies directly from Wizard of Oz corpora may suffer
from data sparsity, and are prone to overfitting [13].

Instead, Rieser and Lemon [13] and Williams and
Young [29] demonstrate how the data from Wizard of Oz
experiments can be used to design a reinforcement learning

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 4

problem in which a virtual agent automatically discovers
optimal dialogue strategies. In this reinforcement learning
approach, the agent repeatedly engages in “dialogues” with
simulated users, in which each dialogue turn is expressed
as a descriptive dialogue act representation. Through these
repeated interactions, the virtual agent is able to experiment
with different dialogue strategies and discover the optimal
action to take given any arbitrary dialogue state.

In order to model this reinforcement learning problem,
four distinct elements must be defined: an action space,
consisting of all dialogue acts available to the user and the
system; a state space, accounting for any relevant dialogue-
and task-specific features; a simulated learning environment,
which updates the dialogue state after each system action;
and a reward function, which provides the system with feed-
back upon taking a certain action in a certain state. Anno-
tated conversational data enable developers and researchers
to design reinforcement learning models for dialogue strate-
gies by providing an empirical basis for deciding on the
appropriate action and state spaces, determining the reward
function, and creating a simulated learning environment
that reflects the goals and behaviors of real users.

2.4 Dialogue Acts

A dialogue act is a spoken or written utterance that ac-
complishes a specific purpose in a conversation. Dialogue
act classification refers to the task of labeling utterances
with descriptive dialogue act types, such as “greeting” or
“information-elicitation” [30].

To create a dialogue system, both language and dia-
logue act types must be known for utterances in example
conversations [13]. A virtual assistant must learn to mimic
good strategies in terms of dialogue act flow (e.g., it must
recognize that it should respond to a suggestion-elicitation
with a suggestion). Once it knows that it should respond
with a particular dialogue act type (e.g., a restaurant-
suggestion), it must then collect the information to portray
in an utterance (e.g., a restaurant to recommend) and then
convert the information into an understandable utterance in
natural language. As Serban et. al [10] point out in a recent
survey, several datasets, especially involving Wizard of Oz
experiments, have been created for a variety of domains to
serve as starting points for training virtual assistants.

It is important to note that a single dialogue act can
serve multiple functions simultaneously; for instance, the
utterance “I have to work tonight” in response to an in-
vitation serves as an informative act as well as a rejection
of the previous utterance. To account for these independent
functions, annotators often label dialogue acts across several
different dimensions [31].

Dialogue act dimensions can be broadly character-
ized as either communication-oriented or domain-oriented.
Communication-oriented dimensions relate solely to the
communicative role of an utterance in a conversation,
rather than the content of the utterance. For instance, a
communication-oriented dimension may capture the illo-
cutionary function of an utterance (i.e. the speaker’s in-
tention in producing an utterance) using dialogue act
types such as “inform”, “suggest”, or “offer” [19], [31].
A different communication-oriented dimension may de-
scribe the backward-facing function of an utterance (i.e.

how an utterance relates to a previous utterance in the
conversation) with dialogue act types like “accept”, “re-
peat”, or “answer” [32]. Other potential communication-
oriented dimensions address features like time-management
(e.g., “stalling”) or discourse-management (e.g., “change-
topic”) [33], [34]. Communication-oriented dimensions and
their associated dialogue act types describe conversational
features that are largely domain-independent.

By contrast, domain-oriented dimensions relate to the
specific subject matter of a conversation. Domain-oriented
dimensions may identify the topic of an utterance, or the
task that the speaker is executing [35], [36]. Other dimen-
sions may identify specific pieces of information that are
communicated in an utterance, such as specific dates or
locations; these narrow dimensions are often referred to as
the “slots” or “arguments” of a dialogue act [37], [38].

Annotation schemes comprise one or more dimensions,
each associated with a specific set of labels that may be used
to characterize an utterance along that dimension. Most
popular general-purpose dialogue act annotation schemes
provide anywhere from 3 to 10 different dimensions (as
in [32], [33], [34]), but researchers typically select or create
an annotation scheme to suit to their particular research
goals [39].

Multi-dimensional annotation schemes can be flattened
to one-dimensional schemes for use in downstream tasks.
Rieser and Lemon [13] explain how a multi-dimensional
annotation scheme can be reduced to a one-dimensional
action set to simplify dialogue strategy design for dialogue
systems. In short, frequent combinations of dialogue act
types in a corpus can be identified and associated with
high-level, task-specific actions that map onto desired func-
tionalities in a virtual assistant. However, if the original
annotation scheme does not provide enough granularity
to describe certain types of interactions or functionality,
annotation along additional dimensions would be required.

2.5 API Learning Resources

Programmers use a variety of resources when learning
and using APIs [40]. Typically, developers provide official
documentation to accompany APIs, such as API reference
documentation, tutorials, and example projects [41]. These
resources are critical to API usability, as they describe the
intended behavior of API components, specify constraints,
suggest useful design patterns, and provide other ancillary
information to facilitate API usage [20]. In addition to
official API documentation, programmers also make use
of unofficial API resources available online, such as QA
websites (e.g., StackOverflow), blogs, and code reposito-
ries [40]. These crowdsourced resources can provide broad
coverage [42], but are of lesser value for private APIs or
obscure concepts [43]. When browsing API documentation,
programmers may alternate between “opportunistic” ap-
proaches, which involve searching for resources to address
problems as they arise, and “systematic” approaches, which
involve building up an understanding of the overarching
API functionality and design before implementing API com-
ponents [44].

Unfortunately, APIs are often poorly documented in
practice, as writing and maintaining documentation can

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 5

be a costly and time-consuming endeavor [45]. As a re-
sult, programmers often encounter challenges when learn-
ing and using APIs. Robillard and DeLine [46] performed
a large-scale study of API learning obstacles that affect
professional developers. They found that the most severe
obstacles were related to API documentation; specifically,
inadequate intent documentation, pattern documentation,
code examples, penetrability, and presentation were iden-
tified as the leading causes of difficulty in API learning.
Similar studies reported on the issues most frequently raised
by programmers when navigating API documentation [16],
[47]. These problems are broadly classified into two cate-
gories: problems with content (e.g., documentation that is
incomplete, incorrect, ambiguous, or fails to link specific
API functionality with high-level concepts) and problems
with presentation (e.g., documentation that is bloated, frag-
mented, or contains excessive structural information). These
problems can hamper the usability of an API [48], leading
to its misuse [49], [50], or causing developers to abandon it
altogether [46].

To help programmers overcome the challenges caused
by inadequate API learning resources, researchers have
investigated tools and techniques to assist with API navi-
gation and improve usability. Some proposed tools improve
upon traditional documentation search functionality by in-
corporating additional filtering and sorting options [51],
[52], or implementing alternative query similarity met-
rics [53], [54]. Several tools use online resources to augment
official API documentation; for instance, the JADEITE [55]
and Apatite [56] tools count the number of web search
results for various API components and highlight those that
appear to be more popular, while other tools aim to enhance
official documentation with key insights [57], FAQs [58],
and up-to-date code examples [59] from the internet. Other
researchers have focused their efforts on automatic API
redocumentation, including techniques for automatic code
summarization [60] and API usage example generation [61],
[62]. More recently, researchers have started looking into
virtual agent technology to assist programmers with API
usage.

2.6 Virtual Agents in Software Engineering

Related work regarding virtual agents in the software engi-
neering (SE) literature can be broadly categorized as either
supporting experimentation or prototype virtual agents.
In terms of supporting experimentation, recent work at
FSE’18 [11] is the most similar to this paper. In that work, the
authors conducted Wizard of Oz experiments for debugging
tasks and built an automated classifier for dialogue act
types. However, the one-dimensional dialogue act annota-
tions in that study were rather general, such as “statement”
or “apiQuestion.” This paper is different in that we have
entirely new Wizard of Oz experiments for API usage and
provide more thorough analysis by annotating additional
dialogue act dimensions.

Prototype virtual agents include APIBot [63] (a QA
system for API documentation), WhyLine [64] (a natural
language debugging tool), TiQi [65] (a natural language
interface to query software projects), and Devy [66] (a
virtual assistant that performs Git operations). A compre-
hensive survey was recently conducted by Arnaoudova et.

al [67]. Our work most closely relates to APIBot [63], a
question-answering system for APIs, and OpenAPI Bot [68],
a chatbot to help users navigate REST APIs. However,
there are several key differences: for instance, APIBot is
not designed for multi-turn dialogues, and cannot request
additional information from the user or consider dialogue
history. OpenAPI Bot maintains some dialogue state infor-
mation, but it does not proactively elicit information from
the user. Furthermore, neither paper performs a user study
to investigate what dialogue acts and strategies would be
most valuable in a virtual assistant. Therefore, we view our
work as complementing and enhancing existing work on
virtual assistants in SE.

This work follows a history of empirical studies in
software engineering [69]. In their “roadmap” to empirical
studies in SE, Perry et. al [70] emphasize that “empirical
studies can be used not only retrospectively to validate ideas
after they’ve been created, but also proactively to direct our
research.” Indeed, exploratory studies play an important
role in motivating, guiding, and informing future work [71]
(such as an exploratory study on feature location processes
by Wang et al. [72] that directly inspired subsequent im-
provements [73]). It is our hope that the present study
will similarly facilitate the development of virtual assistant
technology for SE.

3 WizARD OF Oz EXPERIMENTS

This section describes the Wizard of Oz experiments we
designed to simulate the experience of using an API with
the help of a virtual assistant. We designed two scenarios
in which programmers were asked to complete program-
ming tasks using an API for an unfamiliar C library. The
first scenario used the libssh networking library, while the
second used the Allegro multimedia library. In lieu of
documentation, we introduced the programmers to an “ex-
perimental virtual assistant” named Apiza. Unbeknownst to
the programmers, Apiza was controlled by a human (the
“wizard”).

The overarching rationale for this experimental design
was to give rise to circumstances in which a variety of
programmer-wizard interactions would be observed, in ser-
vice of downstream research tasks. To this end, we made a
number of decisions regarding the experimental design that
restricted the scope of the study, as in the API selection and
task design, as well as decisions to leave certain variables
uncontrolled, as in the participant selection and assignment.
These decisions are detailed in the remainder of this section.

3.1 Participants

We distinguish between two participant roles in the ex-
periments: the programmers and the wizards. No participant
served as both a programmer and a wizard. All participants
were asked to fill out an entry survey describing their back-
grounds and levels of programming experience (summaries
of these surveys are given in Appendix A).

3.1.1 Programmers

We recruited 30 participants to serve as programmers.
We recruited 2 locally through our university’s Computer

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 6

Science graduate program, 7 through various freelancer
Subreddits, and the remaining 21 through the freelancing
website Upwork. All programmers had experience using C
in an academic or professional software engineering context
and had no relevant experience with the API that they were
to use in their scenario.

Each programmer participated in a single session. We
gave half of the programmers the libssh scenario, and the
other half the Allegro scenario. The two locally-recruited
programmers participated in an on-campus office room
using a laptop we provided. The rest of the programmers
worked remotely in the environment of their choice, using
their own computers. All programmers worked in a virtual
machine running Ubuntu 16.04. We asked programmers
to work from this virtual environment for two reasons: to
ensure that all of the necessary libraries and compilation
tools were properly installed and configured, and to reduce
the number of potential distractions on the user’s screen.

3.1.2 Wizards

We recruited 6 participants to serve as wizards. The first
author served as the wizard for ten sessions. The other
wizards — 2 computer science graduate students and 3
professional software engineers — served for between one
and six sessions each. Qualifications for wizards were iden-
tical to the programmers: they had used C in an academic
or professional software engineering context, and had not
previously been exposed to the APIs in our experiment.
One wizard only participated in the libssh scenario, one only
participated in the Allegro scenario, and four participated in
both the libssh and Allegro scenarios. All wizards worked
remotely and used their own computers.

In line with other Wizard of Oz experiments, we pro-
vided all wizards with a custom tool to draft messages
and navigate documentation (shown in Figure 1). The tool
allowed wizards to search for API components by keyword
and category. Wizards could click on labeled sections of
function documentation (e.g., Description, Returns, Parame-
ters) to copy individual sections, or click on a function name
to copy the entire documentation for that function. The
tool also provided searchable links to the header files. All
wizards (excluding the author) underwent a brief training
session prior to their first session, in which they were
introduced to the purpose and parameters of the study,
given examples of interactions from pilot studies, and asked
to spend no more than 30 minutes familiarizing themselves
with the API and experimental tool.

A feature of our study, differing from Wood et al. [11] but
similar to Benzmdiller et al. [74] and Kruijff-Korbayové et
al. [75], is that we hired wizards as experimental partici-
pants in addition to the programmers. The decision to hire
multiple wizards was intended to enable us to collect a
more diverse set of dialogue strategies; by hiring wizards
who were unfamiliar with the APIs and allowing them to
participate in multiple sessions, we anticipated that there
would be a learning effect in which wizards would adopt
new strategies as they became more familiar with the API
upon completing successive sessions.

3.2 Scenarios

We created two scenarios, which consisted of sets of soft-
ware design tasks based on APIs for two different C li-
braries: the libssh API, and the Allegro API.

We chose to use C APIs because they consist of basic
data structures, variables, and functions; APIs in object-
oriented languages (e.g., Java) often contain more complex
class hierarchies, which could result in many programmer-
wizard interactions that may be irrelevant to other APIs
(e.g., many web APIs). We chose APIs from two different
domains (networking and multimedia) to observe a broader
range of interactions than might be observed using a single
APIL. We chose the Allegro and libssh APIs in particular
because they are both fairly large (with several hundred
public functions and data structures) and well-documented.
Summaries of both scenarios are shown in Table 1.

Prior to the experiment, the first author completed the
tasks in each scenario to ensure that they were possible to
complete and of reasonable difficulty. We chose software de-
sign tasks (in contrast to, e.g., software maintenance tasks)
to promote interaction between the programmers and wiz-
ards by withholding information about API functionality in
the task specifications.

We prepared both scenarios ahead of time in the virtual
machine used by the programmers. For each scenario, pro-
grammers only needed to edit a single file containing some
skeleton code. After making changes, programmers were
responsible for running a premade make file to observe the
program’s behavior and evaluate their progress. The task
descriptions and skeleton code are available in our online
Appendix (see Section 8). They appear as task_descrip-
tion.pdf and skeleton_code.c in the allegro/ and
libssh/ folders.

The programmers were allowed to use any basic text
editor inside the virtual machine to complete the tasks.
While this decision introduced some variability, it meant
that programmers did not need to waste time adapting to a
totally unfamiliar development environment. It also meant
that programmers would not be able to take advantage of
features available in some IDEs that reveal additional API
information (e.g., by indicating return or parameter types, or

Apiza Wizard Hub ap

sssssssssss

Dratt your message here!

ase oy}

1. channel_read buffer

Fig. 1. Tool used by wizards in the Wizard of Oz experiments. The
header bar allowed wizards to search for components by keyword and
filter by categories defined in the APl documentation. The left half of the
interface displayed a list of the names of all components that satisfied
the search, followed by the complete documentation for each of those
components. The right half contained a text box used to draft messages.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 7

TABLE 1
Summaries of the two experimental scenarios.

API Domain # Participants ~ # Tasks Task Detail Completed in Order ~ API Examples in Skeleton Code
libssh ~ Networking 15 5 Direct instructions True False
Allegro Multimedia 15 7 Open-ended False True

suggesting auto-completions), encouraging them to direct a
broader range of questions to the wizards.

3.2.1 Scenario 1: libssh

The first scenario involved using the libssh API to pro-
grammatically create and employ SSH network connections.
It consisted of five tasks, presented in order of increasing
difficulty. The programmers were instructed to complete
these tasks in order.

The first task simply directed the programmers to com-
pile the program and observe its behavior. This task did
not require use of the API, but we included it to ensure the
programmers understood how to evaluate their progress.
The second task directed programmers to create a new
ssh_session object. We intended for this task to be simple,
requiring only a single API call (ssh_new), in order for the
programmers to become acquainted with Apiza.

We divided each of the remaining tasks into a series of
subtasks. The wording of these subtasks generally hinted
at relevant API components (e.g., a subtask directing pro-
grammers to connect to an ssh server could be completed
using the function ssh_connect). The third task directed
the programmers to set up the ssh_session created in
the previous task by connecting to a server (the localhost),
authenticating the server, and disconnecting from the server.
The fourth task directed the programmers to complete an
empty method called show_remote_user by creating and
opening an ssh_channel, executing the who command
on the channel, reading the response, and shutting down
the channel. This task used many methods similar to those
previously used (e.g., ssh_channel_new), as well as new
methods to execute on and read from a channel. The final
task directed programmers to fill out an empty method
called sftp_operations by creating and initializing an
sftp_session, creating a new file in a new directory,
writing a string to the file, and finally closing the file.

3.2.2 Scenario 2: Allegro

The second scenario involved using the Allegro multimedia
library to add features to a simple video game. There were
a few key differences between the two scenarios.

Whereas programmers in the libssh scenario were pro-
vided a nearly empty source file to work with, we provided
Allegro programmers with skeleton code in which several
features were already implemented (such as the display
and core game loop). These features needed to be correctly
implemented before any other interesting tasks could be
completed, but they were too complicated and used too few
API functions to serve as good tasks themselves.

After observing that some programmers in the libssh
scenario finished all five tasks with time to spare, we de-
cided to include seven tasks in this scenario. Additionally,
we did not include the initial compilation and observation

of program behavior as a separate task, as in the libssh
scenario. We instructed the programmers to compile and
observe the program before beginning the session, to allow
them more time to work on the tasks that actually involved
the APL

Unlike in the libssh scenario, we allowed the program-
mers to work through tasks in any order to prevent them
from getting stuck on any one problem (in practice, nearly
all programmers worked through them in the order pro-
vided). Also unlike the libssh tasks, these tasks provided
only high-level descriptions of the features that were to
be incorporated and 2-3 details or hints. As such, these
problems were a bit more open-ended than those in the
libssh set. This decision was intended to procure a wider
range of programmer-wizard interactions.

The first task directed the programmers to add key-
board functionality to the game. This required installing the
keyboard subsystem, registering it as an event source, and
checking for keyboard events. Though this task required
the use of at least 4 API methods, they were analogous
to methods already implemented in the template program
(e.g., the al_get_display_event_source method may
have hinted at the existence of the al_get_keyboard_-
event_source method).

The remaining tasks directed the programmers to add
a “game over” sound effect, show a score on the display,
draw images on the display, rotate the images appropriately,
pause the game when the player clicked on the display, and
make the display resizable. These tasks generally required
similar steps, such as identifying the correct subsystems and
handling events. The later tasks required the programmers
to understand more complex aspects of the APL

3.3 Methodology

At the start of each session, we instructed the programmer
to open the virtual machine testing environment and login
to a Slack channel for communication. At the same time, we
had the wizard participant login to the same Slack channel
using an account named “Apiza”.

In Slack, we provided the programmer with a document
describing the scenario, including the list of specific tasks
to complete with the unfamiliar API (as described in the
previous section). We asked that all questions relating to the
API be directed via Slack text messages to our “experimental
virtual assistant” called Apiza. We explained that Apiza
was an “advanced Al” able to carry out “organic, natural-
language conversation” and discuss “both high-level and
low-level functionality.”

Once the programmer confirmed that he or she under-
stood the description and the tasks, we started a timer
and instructed the programmer to begin. For the next 90
minutes, the programmer worked through as many of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 8

tasks as he or she could. Throughout, the programmer sent
messages to the wizard, who answered them as quickly and
correctly as he or she could. We instructed the wizard that
Apiza’s responses didn’t need to seem “robotic,” but at no
point was the wizard to reveal that Apiza was a human.

During the session, we did not allow the programmer
to access the API's documentation. While this does not
necessarily represent the most-likely use case for a virtual
assistant for APl usage, it is a constraint necessary in the vast
majority of Wizard of Oz experiments to force programmers
out of their habits and into using the experimental tool [22].
However, we did permit the programmer to search the
internet for general programming questions (e.g., related to
C syntax) in order to narrow the scope of the dialogue.

Unlike the programmer, the wizard had access to several
API resources that would be available to a hypothetical
virtual assistant. The wizard was able to browse the API
documentation and header files and search for keywords
using the tool described in Section 3.1.2. Additionally, we
permitted the wizard to search for API-related information
on the internet, as several tools for API navigation use
online resources to augment the official documentation (as
described in Section 2.5). The main factor limiting the wiz-
ard’s access to information was the pressure to generate a
timely response.

When the time ran out or the programmer finished all of
the tasks, we instructed the programmer to stop working.
We then asked the programmer to send us his or her code
and the list of all URLs visited in the course of the study.
We also asked them to complete an exit survey; as recom-
mended by Reiser and Lemon [13], the exit survey included
the PARADISE [76] questions, which rated user satisfaction
on a 5-point Likert scale.

3.4 Data Collection

We collected six key data items for every experimental
session:

1) The programmer’s entry survey.

2) The wizard’s entry survey.

3) The dialogue between the programmer and the wizard.

4) The source code written by the programmer.

5) A record of any websites the programmers visited
during the session for general C syntax questions.

6) The programmer’s exit survey.

Some programmers also offered additional comments
about their experience with Apiza. All data are made avail-
able in our online Appendix (see Section 8).

4 EXPERIMENT RESULTS

In this section, we present the results of our Wizard of Oz
experiments. We outline the basic structure and descriptive
statistics of the collected corpus, and briefly examine the
programmers’ task performance and satisfaction with the
simulated system. Note that we do not draw statistical con-
clusions regarding the effects or interactions of experimental
factors, as these were not within the scope of our study
(see Section 2.1). Nevertheless, we do make several key
qualitative observations and discuss them in the broader
experimental context.

TABLE 2
Comparison of our corpus to other Wizard of Oz corpora. The numbers
of words and unique words in each corpus are shown where available.

Task Domain #of #of #of # Unique
Dialogues Turns Words Words

APISs (this paper) 30 1947 47928 3190
Debugging [11] 30 2243 50514 4162
Design [77] 31 3606 27459 -
General QA [78] 33 2534 125534 -
Audio player [79] 72 1772 17076 -
Tutoring [80] 37 1917 12346 -
Mission planning [81] 22 1738 - -

4.1 Dialogues

We collected 30 API usage dialogues. This corpus is similar
in size to published Wizard of Oz corpora across a broad
range of domains, as shown in Table 2.

In general, the programmers and wizards sent messages
in turn. Often, these were question-answer pairs, with the
programmer querying some functionality of the API and
the wizard providing the answer. Other types of interactions
occurred as well, such as greetings, assessments, and side-
exchanges — these are explored in greater detail in Sections
Section 5 and 6. The following excerpt from Dialogue #19
in the corpus typifies the interactions that occurred in the
dialogues. Messages are labeled with “PRO” or “WIZ”,
denoting the speaker as a “Programmer” or “Wizard.”

PRO: allegro keyboard input

WIZ: You can save the state of the keyboard
specified at the time the function is called into the
structure pointed to by ret_state, using
al_get_keyboard_state

PRO: Whats the function signature for
al_get_keyboard_state

WIZ: void al_get_keyboard_state(
ALLEGRO_KEYBOARD_STATE x*ret_state)

Across all dialogues, participants collectively generated
1927 Slack messages (also referred to as “turns”). Wizards
and programmers sent similar quantities of messages, av-
eraging to 31.8 messages/dialogue sent by programmers
and 33.1 messages/dialogue sent by wizards. The frequency
was also similar across the two tasks; participants sent an
average of 68.5 messages in the libssh scenario, compared to
61.3 sent in the Allegro scenario.

The dialogues contain a total of 47928 word tokens' with
a vocabulary size of 3190 words. Wizards used considerably
more words (41185) and drew from a larger vocabulary
(2988) than programmers, who used 6743 words and 880
unique words. This disparity in word usage is to be ex-
pected; programmers manually wrote the majority of their
messages’ content, and had access to only limited infor-
mation. By contrast, wizards frequently copied and pasted
large chunks of pre-written documentation for the user.

!Word tokens were generated using the word_tokenize method
from Python’s nltk.tokenize.punkt module.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 9

TABLE 3
Programmers’ performance on the tasks. “Attempt rate” refers to the
percentage of all programmers that wrote at least one line code directly
related to the task. “Completion rate” refers to the percentage of those
programmers that successfully completed the task. “# Messages”
refers to the total number of messages in the corpus related to the task.

Scenario Task Attempt Rate Completion Rate # Messages
1 100.0 100.0 0
2 100.0 78.6 194
libssh3 3 100.0 21.4 723
4 71.4 40.1 455
5 51.1 28.0 317
1 100.0 66.7 473
2 93.3 78.6 446
3 80.0 41.7 303
Allegro 4 40.0 66.8 109
5 6.7 100.0 26
6 6.7 100.0 43
7 0.0 N/A 0

4.2 Task Completion

Not every programmer completed every task. This fact is
valuable because the task completion rate can be used as a
metric to characterize the “success” of individual dialogues,
which may be useful in designing a reward function for a
model for dialogue strategy development.

We calculate two specific metrics: the task attempt rate
(that is, the proportion of programmers that attempted
a task) and the task completion rate (of the programmers
who attempted a task, the proportion who successfully
completed it). We considered a programmer to have “at-
tempted” a task if he or she wrote at least one line of code
directly related to the task. If it was ambiguous whether a
line of code related to a task, we referred to the dialogue for
additional context. We considered a programmer to have
“completed” a task if he or she correctly implemented API
components necessary to satisfy that task’s requirements,
even if the code did not compile or execute?.

Table 3 shows programmers’ attempt and completion
rates for each task, as well as the total number of messages
in the corpus that were related to task. For instance, 71 4% of
all programmers attempted Task 4 of the libssh scenario; of
those programmers, 40.1% completed the task; and in total,
455 messages sent by all participants in the libssh scenario
related to Task 4.

Attempt and completion rates for different tasks varied
between 0% and 100%. We generally observed lower at-
tempt and completion rates for the later tasks, which were
more difficult and for which the programmers may have
had less time, depending on their performance on earlier
tasks. Tasks 5 and 6 of the Allegro scenario each have a
success rate of 100% because only one programmer at-
tempted and completed those tasks. Programmers generally
finished one task before moving to the next; however, they

2For instance, tasks in the libssh scenario that relied on an ssh
connection established in prior tasks could be considered completed
even if the prior tasks setting up that connection were unsuccessful.
Similarly, tasks could be marked as completed even if syntax or control
flow errors unrelated to the API usage for that particular task prevented
code related to that task from executing.

3Only 14 sessions are considered here, as one participant in the libssh
scenario did not submit a source code file.

Dialogue Progressed at
an Appropriate Pace

System was Easy to Use
System

Responded Quickly

User Could
Understand System
System Performed

its Job Well

User Would Use

System in the Future
System was Preferable

to Alternatives

System Could
Understand User

System Behaved
as Expected

)

5 10 15 20 25

w
S

m Strongly Disagree Disagree No Opinion Agree m Strongly Agree

Fig. 2. Programmers’ PARADISE ratings for the Apiza system.

occasionally moved on from a task without successfully
completing it, including several programmers in the libssh
scenario (despite instruction to complete the tasks in order).

4.3 User Satisfaction

In addition to observing the programmers’ objective per-
formance on the tasks, we also asked programmers to
fill out surveys subjectively rating their satisfaction with
the “virtual assistant” system on a 5-point Likert scale.
The survey questions were taken from the PARADISE [76]
framework for automatic dialogue evaluation. To measure
different dimensions of user satisfaction, the authors of the
PARADISE framework created a set of 9 survey questions
corresponding to features such as “Interaction Pace” and
“Task Ease.” These questions have been widely adapted
and used in subsequent dialogue studies [13]. Figure 2
summarizes the results of the user survey. We include the
full list of survey questions and programmer responses in
our online Appendix (see Section 8).

The features corresponding to the system’s ability to
understand user turns and the understandability of the
system’s turns were the most highly-rated, scoring around
4 points on average. The features related to the pace of
the conversation and the speed of the system’s response
received the lowest ratings, around 2.8 points on average.
Scores varied greatly across raters; the harshest rater gave an
average score of 1.5, while the most generous rater awarded
an average score of 4.9.

That the features relating to interaction pace generally
scored relatively low and those related to system under-
standing scored high is not surprising given the nature of
the Wizard of Oz deception. For users accustomed to real
virtual assistants, the system’s high intelligence came as
a pleasant surprise, while its sluggishness was a source
of frustration. As one programmer wrote in a comment,
“Most of the time the first answer given by Apiza directly
answered the question [...] The wait was a bit annoying
though. I'm used to getting answers (well, search results)
within a few seconds of entering a query.”

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 10

4.4 Observations

We report several qualitative observations regarding the
results of the experiments.

4.4.1 Programmer behavior

Programmers engaged in a broad variety of conversa-
tional behaviors related to API usage. The most prominent
behavior exhibited by nearly all participants was asking
“How?” questions. These questions were widely used by
programmers to introduce task transitions and elicit high-
level guidance (e.g., “How do I play a sound in Allegro?”)
but programmers also asked these “How?” questions in
service of lower-level outcomes (e.g., “How do I access the
keycode from an event object”). Other frequently-observed
behaviors included questions regarding the functionality of
specific API components (e.g., “What is the size parameter
in al_load_font”), the structure and contents of the API (e.g.,
“list all ssh connection functions”), requests for example
code (e.g., “can you give me an example of sftp_open”),
and responses or feedback to wizard turns (e.g., “Yes.”).
We analyze the distribution of these different behaviors in
greater detail in Section 6.

We noted that a number of programmers endeavored
to access more traditional API resources to complete the
tasks, e.g., by requesting that Apiza direct them to the offi-
cial documentation. Generally, these requests came midway
through the study, indicating that the programmers may
have gotten stuck or become frustrated with the system,
and either believed they would be unable to procure the
necessary information via directed questions or decided
they would prefer to fall back on standard approaches to
API navigation. One programmer (in Dialogue #2) began
the session by immediately querying “libssh documentary
[sic]”; later, the programmer requested that Apiza “list all
function of libssh documentary”. In the meantime, the pro-
grammer also asked more targeted questions about specific
functionality and components.

Finally, while statistically characterizing the effects of
programmer experience on their behavior and performance
is outside of the scope of this study (see Section 2.1), we
will remark that programmers who reported >10 years of
programming experience completed more tasks, on average,
than those with less experience, and those who reported
“Intermediate” familiarity with the API domain in the libssh
scenario* completed more tasks than those with “Novice”-
level familiarity (these figures can be found in the experi-
mental_results/ folder in our online Appendix).

4.4.2 Programmer expectations

In the dialogues, we observed habits and expectations that
programmers may have developed over time by interacting
with other virtual assistants and search tools. Programmers
often avoided the use of pronouns to refer to recently
mentioned API components. They may have wanted to
be as clear as possible in the event that Apiza would be
unable to resolve the antecedent. Some programmers treated
Apiza like a more traditional search engine by construct-
ing queries as ungrammatical sequences of keywords (e.g.,

“We only mention libssh here, as only 2 programmers reported
“Intermediate” or higher familiarity in the Allegro scenarios

queries like “verify ssh server example code” and “Allegro
play sound”).

At the same time, many programmer questions demon-
strated greater expectations for Apiza to be able to assess
programming scenarios and recall previous conversational
context than would be expected of a traditional search
engine. For instance, the programmer in Dialogue #24 asked
“if Ihave an ALLEGRO_EVENT called ev, should ev.type ==
ALLEGRO_EVENT_KEY_DOWN return true when I press
a key?”. This question demonstrates the programmer’s ex-
pectation that Apiza would be able to not only comprehend
variable assignment, but also to evaluate a high level design
pattern using that custom variable.

Similarly, the programmer in Dialogue #6 posited a
question about a code snippet in a previous turn:

s ~

Wiz: ... Example: ... while ((rc =
channel_read(channel, buffer, sizeof(buffer), 0))
>0){ ...

PRO: what is buffer in that code sample?
PRO: just a char *?

\. J

The programmer did not directly ask Apiza to give
the type of a particular parameter in a particular function.
Rather, the programmer expected Apiza to recall the code
snippet sent in the previous message, identify that “buffer”
refers to a variable name used in that snippet, and determine
the type of that variable based on its usage as a parameter
in certain function invocations.

Finally, we observed that programmers occasionally
asked questions outside of the scope of the system’s func-
tionality as described in the scenario descriptions. Some of
these questions, such as “How’s it going?” and “How is
the weather where you are?” related to social functions that
did not serve to communicate task-relevant information.
It is not necessarily clear that programmers expected the
system to respond to these types of questions, as these
questions may have been performative, with programmers
aware that their dialogues would eventually be reviewed, or
experimentative, with programmers attempting to explore
the range of the system’s functionality.

In other cases, programmers chose to direct general C
syntax questions to Apiza (such as “how to print to stdout ?”
in Dialogue #3), despite being allowed to search the internet
for this information. These questions would seem to demon-
strate an expectation that the system be able to comprehend
more general programming concepts unrelated to the target
AP]I, or at least be able to identify the programmers’ intent
and refer them to useful external resources.

4.4.3 Wizard strategies

We did not observe that different Wizards clearly performed
“better” or “worse” than other wizards. As with program-
mers, detailed comparisons of the performance of different
wizards’ dialogue strategies are not in the scope of the
study (see Section 2.1). However, we do make qualitative
observations regarding the diversity of strategies used.
When faced with API usage questions, wizards gener-
ated a range of response types. For instance, in response to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 11

common “How?” questions eliciting guidance to implement
certain objectives, wizards sometimes gave detailed pattern
descriptions and examples, suggestions to utilize certain
API functions (e.g., “al_get_mouse_event_source will give
you the mouse event source”), lists of relevant functions,
requests for clarification (e.g., “There are several authenti-
cation functions. How would you like to authenticate?”),
or statements that the request could not be fulfilled (e.g.,
“I am sorry, I am confused.”). Section 6 provides a more
comprehensive overview of the response types observed.

Notably, even for questions that were nearly identical,
wizards produced different types of responses in different
dialogues. For instance, the programmers in Dialogues #21,
#26, and #28 all asked similar forms of the question “How
do I get keyboard input?” as their first API-related question
in the dialogue. However, the wizards all produced different
dialogue act types in response: the wizard in Dialogue #21
provided an excerpt of documentation relating to a static
variable that mentioned “keyboard” and “pressed” ; the
wizard in Dialogue #26 indicated that several functions
would be required, and provided the first one; and the
wizard in Dialogue #28 gave a thorough code example.

Because the wizards were responding to the first API-
related question in all three dialogues, they were all making
decisions in the context of the same essential “dialogue
state.” Yet, each responded with a different dialogue act
type, which demonstrates that they were using different dia-
logue strategies. Furthermore, we note that the same wizard
participated in both Dialogue #21, and Dialogue #26. The
fact that the wizard chose to use a different dialogue strat-
egy in Dialogue #26 that immediately provided a relevant
example, rather than the documentation for a component
with related keywords, is indicative of the learning effect
that we expected to produce.

4.4.4 Deviations in dialogue structure

Asnoted in Section 4.1, the interactions in the dialogues typ-
ically followed a simple question-answer structure, in which
the programmer sought information and the wizard pro-
vided it. This was not always the case, however. Sometimes
wizards sought information from the programmer (e.g.,
clarification questions); other times, programmers proac-
tively offered information. Occasionally, a speaker would
send multiple messages in a row, as demonstrated in the
following excerpt from Dialogue #24:

s D

PRO: if I have an ALLEGRO_EVENT called ey,
should ev.type ==
ALLEGRO_EVENT_KEY_DOWN return true
when I press a key?

WI1Z: I'm not sure I understand

WIZ: Are you interested in al_get_keyboard_state
or al_key_down?

PRO: no
PRO: tell me about al_get_keyboard_state

. J

In total, 15.7% of the wizards” messages and 18.3% of
the programmers’ messages were followed by one or more
messages from that speaker. Furthermore, speakers often

expressed multiple, separate ideas and intentions within a
single message. Identifying these utterances, parsing their
meanings, and determining appropriate response types are
key challenges a virtual assistant needs to overcome. Sec-
tion 5 describes the first steps we’ve taken towards tackling
these challenges.

4.5 Threats to Validity

As in any experimental study, our experimental design
carries a number of threats to validity, including human
factors, the participant selection process, the details of the
experimental scenarios, participants’ adherence to guide-
lines, and the design of the communication interface. Here,
we will briefly address these threats, and explain the steps
we took to mitigate them.

Human factors. Human factors that were not controlled
in the experimental design had the potential to impact
participants” behavior and performance. Factors such as
fatigue and distraction were not possible to observe re-
motely; therefore, efforts were made to mitigate them. To
reduce the effects of fatigue and distraction, we limited each
experimental session to 90 minutes. We also attempted to
curb distraction by providing distraction-free virtual envi-
ronments to both the programmers (the virtual machine
testing environment) and the wizards (the custom tool). Still,
those factors may have played a role in some experimental
sessions.

Participant selection. We invited programmers from a
wide range of backgrounds to participate, in order to ob-
serve a wide range of programmer behavior. However, this
leniency means that it is possible that the behavior observed
may have been different with a different set of program-
mers. Similarly, while our decision to recruit a fairly large
number of wizards (6) and allow them to participate for
a variable number of studies was intended to promote di-
verse wizard strategies, it introduced more factors that may
have affected the results of each experimental session. We
attempted to mitigate these risks by recruiting a fairly large
number of programmers (30) and having all participants
complete entry surveys to document their backgrounds.
Still, there were a large number of individual differences
among participants that were not balanced in our experi-
mental design, meaning that certain statistical analyses of
the corpus may be confounded by these factors. That said,
we believe that our participant selection process ultimately
struck a reasonable balance between experimental control,
generalizability, and practicality.

Experimental Scenarios. The choice of APIs and the
design of the particular tasks we asked participants to
complete in each scenario may have also had an effect on the
types and quantities of interactions that occurred. The do-
main of each API and the quality of its documentation likely
affected the wizards’ ability to find relevant components
and make recommendations, as well as the programmers’
ability to determine which components were appropriate
and how to use them. Similarly, the specificity and wording
of the tasks may have influenced the types of questions
programmers asked, or primed them with certain keywords.
However, there is no single API or task set can generalize
to all APIs and tasks. Therefore we chose two APIs from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 12

different domains and made one task set more open-ended
than the other. The tasks themselves were designed to cover
a relatively broad range of the functionality offered by the
APIs. We kept the task descriptions short, and avoided
identifying specific API components or implementations
when possible. Still, the many differences between the two
scenarios (such as the different number and quality of tasks)
means that any differences observed between them in the
results cannot be attributed to any individual variable.

Adherence to Scenario Guidelines. To encourage pro-
grammers to follow the scenario guidelines, we included
all pertinent information and restrictions in the document
detailing the experimental tasks, and before beginning ses-
sions, we asked them to read through the document and
gave them the opportunity to ask any questions. Never-
theless, some programmers failed to adhere to guidelines
relating to the task completion order in the libssh scenario
and the prohibition on online API resources. As shown in
Table 3, several programmers moved on to subsequent tasks
in the libssh scenario without successfully completing the
previous ones as instructed in the task document. Addition-
ally, 5 programmers wound up making API-related internet
queries; 2 of them made searches and accessed resources
related to a single API component, 2 of them accessed a
tutorial, and 1 asked questions about numerous components
and accessed a tutorial.

However, we do not believe these instances invalidate
the results of those experimental sessions with respect to
the downstream dialogue strategy development task. The
various restrictions were not intended as experimental con-
trols; they were primarily intended to promote programmer-
wizard interaction. By violating the restrictions, program-
mers may or may not have wound up interacting with
Apiza less than they otherwise would have, but the interac-
tions that they did have are still relevant towards dialogue
strategy development. Therefore, we chose to keep these
sessions in the corpus and annotate them as normal. That
said, future attempts at statistical analysis should be aware
of these cases, and may consider excluding them altogether.

Communication interface. Finally, the chosen communi-
cation interface may have impacted the results of the study.
Being limited to text-based communication over Slack may
have affected the amount of information wizards decided
to include in individual messages (e.g., they may have
suggested fewer API components in spoken messages, or
more components if they had been able to link directly
to documentation). At the same time, the interface may
have affected the frequency and wording of programmer
questions. As analyzing the differences between communi-
cation modalities was not in the scope of this study, we felt
that text-based communication via Slack would suffice, as
Slack is a fairly well-known messaging platform with few
restrictions on message length or frequency, and one for
which many developers have created actual bots.

5 CORPUS ANNOTATION

We annotated the dialogue acts in the Wizard of Oz corpus
along four highly-generalizable dimensions. As described in
Section 2.3, dialogue act annotations are needed to train vir-
tual assistants to perform specific tasks. Different annotation

schemes are needed to facilitate different functionality in a
virtual assistant. Future researchers may find that they need
to annotate additional or alternative dimensions to capture
certain types of interactions or functionality observed in the
corpus. To attempt to generate a comprehensive list of all
dimensions for all functionality is not in line with findings
from related literature [82]. Instead, we provide a first
round of highly-generalizable annotations as a foundation
on which future virtual assistant developers can build (as
described in Section 2.4).

5.1 Research Questions

We investigated four specific research questions:

RQ1 What is the composition of the corpus in terms of
illocutionary dialogue act types?

An illocutionary dialogue act type describes the illocution-
ary function of an utterance (e.g., distinguishing between
a statement intend to inform and a statement intended to
suggest a future action). The rationale for R(); is to discover
the conversational “flow” of the API dialogues. Annotating
illocutionary dialogue act types enables us to train a virtual
assistant to identify the intent behind a user’s utterance and
to predict the appropriate type of response (e.g., whether
to respond to a question with an answer or a follow-up
question).

R(Q)2 What is the composition of the corpus in terms of API
dialogue act types?

Whereas illocutionary dialogue act types label utterances
as “questions” or “statements,” API dialogue act types de-
scribe what types of API knowledge (such as functionality,
usage patterns, or examples) are addressed in each utter-
ance. The rationale for R(Q)s is to evaluate the domain-
specific content of the API dialogues. As Wood et al. [11]
point out, a virtual assistant must be able to identify the type
of domain-specific knowledge a programmer asks about in
order to respond with a relevant answer.

RQ@Q3; What is the composition of the corpus in terms of
backward-facing dialogue act types?

A backward-facing dialogue act type describes how an
utterance relates to a previous utterance (e.g., supporting
or rejecting a prior utterance). The rationale for RQ)s is
to observe relationships among the utterances in the API
dialogues. We found that programmers and wizards did
not always engage in simple question-answer turn-taking.
Rather, dialogues sometimes became complex, with partic-
ipants referencing prior turns and multiple conversational
“threads” progressing in parallel. A virtual assistant should
be able to track dialogue threads in order to draft contextu-
ally appropriate responses.

R(@Q4 What is the traceability of specific API components in
the corpus?

The rationale behind RQ)4 is to identify and track the
specific API components that are addressed throughout
the dialogues. This identification is related to the concept
assignment problem, as it involves connecting specific soft-
ware components to their relevant natural-language con-
cepts. We refer to this identification as traceability, as it

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 13

relates to the concept of traceability in software engineer-
ing [83]. A virtual assistant for APIs must be able to identify
the API elements relevant to a user’s utterance (even when
those elements are not mentioned by name).

We addressed each of these research questions by anno-
tating the conversation corpus along a different dimension
of an annotation scheme.

5.2 Methodology

This section details the annotation scheme used to investi-
gate the research questions presented above. The complete
lists of dialogue act types for all annotation dimensions are
given in Appendix B.

5.2.1 Segmentation

Before assigning any labels, we first had to segment the
Slack messages into individual segments, or utterances.
McCowan et al. [19] emphasize that dialogue acts reflect
speaker intention, and in their guide, they recommend that
“each time a new intention is expressed, you should mark a
new segment.” The length of an utterance is variable; it may
consist of a single word or entire paragraphs, depending on
the speaker’s intention. In our experiments, programmers
and wizards often expressed multiple intentions, responded
to multiple utterances, or referenced multiple API compo-
nents in the course of a single message. Therefore, it was
important to segment the messages before labeling.

Our corpus presented a unique segmenting challenge:
wizards often shared verbatim chunks of documentation to
the programmer. These chunks could contain several para-
graphs worth of information. To segment each individual
utterance of the verbatim documentation would not quite
be appropriate, as they do not necessarily represent separate
intentions on the part of the wizard. On the other hand,
to group an entire chunk of documentation into a single
segment would be too coarse grained, as wizards had the
ability to purposefully include and exclude certain types
of information using the documentation tool described in
Section 3.1.2. Given that fact, we chose to segment chunks
of documentation by topic (e.g., discussion of all parameters
was segmented into an utterance, separate from discussion
of the return values).

5.2.2 Methodology of RQ1: lllocutionary Annotation

We labeled illocutionary dialogue act types using the so-
called “AMI labels” (see Table 7 in Appendix B). The
AMI corpus, presented by McCowan et al. [19], provides
a coarse-grained set of labels for illocutionary dialogue act
types that are applicable to many types of conversations.
As Gangadharaiah et al. [84] point out, a useful place to
start annotation is with a set of 10-20 coarse-grain labels to
provide a common comparison point with other datasets,
even though these annotations alone are not sufficient for
industrial use.

Our methodology for annotation was straightforward:
McCowan et al. [19] provide an annotation guide with
detailed instructions for every dialogue act type. We fol-
lowed this guide for every conversation, labeling each
utterance with the most appropriate label. We exclude
three of the original AMI labels (STALL, FRAGMENT, and

BACKCHANNEL) that were primarily relevant to spoken
modalities. Note that we annotated both sides of the con-
versations, wizard and programmer, even though a virtual
assistant would only need to classify the dialogue acts of
the programmer — it would know the wizard’s dialogue act
types because it would have generated them. However, we
annotate both sides anyway, since we are interested in the
wizards’ conversation strategies and providing guidance to
designers of virtual assistants. This decision is in line with
recommendations by Wood et al. in a study of software
engineering virtual assistants [11].

We compared the frequencies of illocutionary dialogue
act types in our corpus to one corpus in a similar domain,
the Wizard of Oz debugging corpus [11], and one corpus
in a dissimilar domain, the AMI meeting corpus [19]. The
debugging corpus consists of written dialogues between
programmers and wizards completing a series of bugfixing
tasks, while the AMI corpus consists of spoken multi-party
discourse in simulated meetings.

These comparisons are valuable because the lack of
domain-specific training data has been a major barrier in
the development of virtual assistant technology for software
engineering tasks. By highlighting similarities across do-
mains, we hope to encourage researchers to consider ways
to leverage existing data; for instance, if the distribution
of illocutionary dialogue act types in API usage dialogues
is evidently similar to that in similar domains, it may
encourage researchers to consider using certain transfer
learning techniques for tasks such as dialogue act classifica-
tion. Conversely, stark differences between the corpora may
warn researchers against incorporating out-of-domain data
into certain models. Of course, the two corpora chosen for
comparison are by no means representative of the vast col-
lection of publicly-available conversational data; however,
they allow us to characterize our corpus in the context of
similar and dissimilar domains.

5.2.3 Methodology of RQ2: APl Knowledge Annotation

The API dialogue act types in each utterance were labeled
according to the taxonomy proposed by Maalej and Robil-
lard [20] (see Table 8 in Appendix B). In their work, they
generated a set of 12 broad categories that may be used to
classify the information types present in API documenta-
tion. In a different paper, Tian et al. [63] applied these labels
not only to API documentation, but to questions about
documentation as well. By training a model on API ques-
tion/answer pairs associated with these labels, they were
able to achieve high performance on an API information
type retrieval task.

We followed the annotation guide provided by Maalej
and Robillard, which describes in detail every knowledge
type and provides suggestions to resolve uncertainties. We
labeled API dialogue act types in utterances by both the
wizards and the programmers, but we only labeled utter-
ances that actually contained API information. Unlike the
illocutionary dialogue act annotation scheme, Maalej and
Robillard explicitly allowed for multiple labels to be applied
to a single unit; therefore, when appropriate, we annotated
utterances with multiple API dialogue act types.

We found that the knowledge type that Maalej and
Robillard referred to as “NON-INFORMATION" actually

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 14

encompassed valuable information in the context of these
dialogues, such as the names of functions, their parameters,
and their return values. As such, we decided to create a
“BASIC” category for utterances meant to convey these
basic pieces of information.

5.2.4 Methodology of RQ3: Backward-Facing Annotation

We used another layer from the AMI annotation scheme [19]
to capture the relationships among utterances (see Ta-
ble 9 in Appendix B). This layer consists of only four
backward-facing dialogue act types: “POSITIVE,” “NEG-
ATIVE,” “PARTIAL,” and “UNCERTAIN.” Each of these
covers a wide range of relationship types; for instance,
“POSITIVE” can imply agreement with a previous utter-
ance, understanding of a previous utterance, or an attempt
to provide something that a previous utterance requested.

We again followed the AMI guidelines. In this scheme,
an utterance can only relate directly to a single prior utter-
ance, so an annotation consisted of a single label and the ID
of the related utterance. Any utterance could relate to any
prior utterance by either speaker. Any utterance without a
backward-facing function (e.g., an utterance starting new
lines of questioning) was given a placeholder “[NONE]”
label.

In the course of annotating relationships, we found that
the four backward-facing dialogue act labels did not pro-
vide enough granularity to satisfactorily capture all of the
observed relationships between utterances. We noted that
other dialogue act labeling schemes (such as DAMSL [32])
provide more distinction between different types of re-
lationships (e.g.,, DAMSL distinguishes among “Accept,”
“Acknowledge,” and “Answer” relationships, all of which
AMI would classify as “POSITIVE”). Therefore, we chose
to add three additional labels to the original AMI set of
backward-facing dialogue act type labels in order to more
meaningfully evaluate the relationships that occur in our
specific corpus.

The three labels that we added were “REPEAT,”
“FOLLOW-UP,” and “CONTINUE.” The “REPEAT” label
was used to mark repetitions, repairs, or rephrasings of
a previous utterance. The “FOLLOW-UP” label was used
to mark acts that followed up on a previous utterance,
either by asking a question predicated on the utterance,
or providing unprompted information or suggestions based
upon the previous utterance. The “CONTINUE” label was
intended to link contiguous utterances by one speaker that
form a single question or response. For instance, Apiza
often responded to requests for documentation by sending
information about parameters, return values, functionality,
etc. These responses each comprised several utterances —
it would be inaccurate to label each utterance as having a
totally separate relationship to the original query.

5.2.5 Methodology of RQ4: Traceability Annotation

The “traceability” annotation of specific API components
was inspired by topic- and entity-labeling methodologies in
NLP and SE [85], [86], [87]. This dimension did not involve
dialogue act types per se — instead, it used the names of
API components as labels. We went through every utterance
and labeled any API components that were the topic of the
utterance. An API component did not need to be referenced

by name to constitute a topic, and direct references to a
component did not necessarily make them a topic. Rather,
the decision was heavily based on context, the intention of
the speaker, and the retroactive role of the component in the
conversation.

For instance, the utterance “How do I ensure a session
was successfully created?” does not explicitly name any
component of the libssh API — however, the “session” is
in reference to an ssh_session struct, and the question is
asked directly after a discussion of the ssh_new () method.
Therefore, both the ssh_session struct and the ssh_-
new () method are labeled for that utterance.

We referred to the official documentation for each API
to determine which API components to include as potential
labels. For the Allegro API, we included all API compo-
nents with indexed pages in the documentation® — 338 in
total. For the LibSSH API, we included the functions from
several modules as well as all data structures listed in the
documentation® — 1038 in total. We include these complete
lists in our online Appendix (see Section 8).

5.2.6 Note on Reliability

In any annotation process, it is important to consider the
reliability of the annotations, or “the extent to which different
methods, research results, or people arrive at the same
interpretations or facts” [88]. Bias, fatigue, and other factors
may cause an individual annotator to produce inconsistent
or unreliable results [89], [90].

It is common for researchers to gauge the reliability
of their annotations by asking multiple, independent an-
notators to annotate data and then calculating an agree-
ment score using, e.g., Cohen’s kappa or Krippendorff’s
alpha [91]. Establishing reliability is especially important
in “conventional” qualitative analysis, or “open-coding”
processes in which annotators do not use predetermined
sets of labels. In those cases, agreement among indepen-
dent annotators does not just indicate the reliability of a
particular set of annotations, but rather, the reliability of the
annotation scheme as a whole.

However, the act of calculating agreement does not itself
improve reliability. Furthermore, agreement scores are noto-
riously difficult to interpret (e.g., while an agreement score
of .8 is generally considered to indicate high reliability, it is
not sufficient for applications that are “unwilling to rely on
imperfect data” [92]).

By contrast, we performed “directed” qualitative analy-
sis; that is, we annotated the corpus using preexisting sets
of labels. Our priority was not to measure the reliability of
the existing annotation schemes, but to ensure the correct
application of those schemes. To achieve unbiased results
in this sort of analysis, Hsieh and Shannon [89] suggest
using an “auditing” process, in which experts discuss the
application of label sets and resolve any ambiguities. This
type of procedure has frequently been used in the social
sciences [93], [94], and more recently, in software engineer-
ing [11]. This process allows for the creation of a single,
higher-quality set of annotations for use in applications that
are less willing to rely on imperfect data [11].

5h’ct'ps: / /liballeg.org/a5docs/5.2.2/index_all.html
6h’rtps: / /apilibssh.org/master/modules.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 15

0.5

0.45
API (Programmers)
0.4
M Debugging (Programmers)

AMI

o
S w
w

Frequency
o
N

0.25
0.15
0.1
0.05 I I
. - L I
«
0Q.® © @ &

N n
S & 9 L & A
& QS © SR
2\ O QO 9 K N Q)
VE LSS 2 & o““‘j S
> £ & & &«
& S S SR S
Q & L < S
SRR &
U &
S &
&
>

0.75

0.7 ,l,

M API (Wizards)
M Debugging (Wizards)
AMI

Frequency

0.1
0.05
[—

& & @ o S SN
oﬁé NS Q\é & Q\é 0§ ¥ oq‘® <<‘<‘V /\‘?“V £
¥ & & N & s & J &
SR P A R &
AR O T«
& ¥ L s S K
SR U A
N © N @)
NN &
& &
X
©
<&

Fig. 3. Frequencies of illocutionary dialogue act types in our API corpus, the debugging corpus by Wood et al. [11], and the AMI meeting corpus
[19]. (a) shows frequencies across programmer utterances, while (b) shows frequencies across wizard utterances.

We followed this procedure: the first author annotated
the corpus following the guidelines for existing annotation
schemes for each relevant dimension. Whenever there was
some ambiguity as to the correct application of an anno-
tation scheme, the first and third authors discussed the
situation and decided on a correct implementation (or, in
some cases, modifications to the scheme). Although this
auditing process does not allow us to calculate an agree-
ment score, it allowed us to generate a single set of “more
accurate” annotations [89]. Still, we acknowledge that future
researchers who wish to apply these annotations directly
may be wary of the fact that a reliability metric cannot be
calculated.

6 ANNOTATION RESULTS

Next, we discuss the results of the annotation process de-
scribed in the previous section. Before assigning any labels,
we segmented the programmers’ and the wizards’ messages
into discrete utterances, as described in Section 5.2.1. We
ultimately segmented the 1947 messages in the corpus into
3183 utterances. Programmers’ messages contained 1.1 ut-
terances on average, with 6% containing more than one
utterance. Wizards’ messages contained 2.2 utterances on
average, with 57% containing more than one utterance.

6.1 RQ1: lllocutionary Dialogue Act Types

Interactions in the API dialogues most frequently consisted
of questions levied by the programmers, and information
or suggestions provided by the wizards. Other illocutionary
types and patterns emerged, but they were infrequent in
this corpus compared to the more conversational AMI and
debugging corpora.

Figure 3 shows the composition of the corpus in terms
of illocutionary dialogue act labels. Programmers most fre-
quently used dialogue acts of the ELICIT-INFORM and
ELICIT-OFFER-OR-SUGGESTION illocutionary types, col-
lectively accounting for approximately 80% of all program-
mers’ dialogue acts. Wizards primarily used dialogue acts
of the INFORM type, accounting for nearly 74% of their
dialogue acts. The next most common label for the wizards

was SUGGEST, accounting for 13% of their labels. These
preferences seem to reflect the task goals and the partic-
ipants’ different roles in the API dialogues; programmers
sought to learn how to use the API, and wizards provided
the desired information.

We compared the distribution of AMI labels in our
corpus to two others: the AMI meeting corpus [19] and the
Wizard of Oz debugging corpus [11]. As shown in Figure 3,
the three corpora shared a few traits: the relatively high
frequency of INFORM acts and the relative rarity of the BE-
NEGATIVE, COMMENT-ABOUT-UNDERSTANDING, and
ELICIT-COMMENT-ABOUT-UNDERSTANDING acts.

Beyond those similarities, the distributions varied sub-
stantially among the three corpora. Compared to the speak-
ers in the AMI corpus, programmers in both Wizard of Oz
studies used more dialogue acts of the ELICIT-INFORM
and ELICIT-OFFER-OR-SUGGESTION types and fewer of
the INFORM and SUGGEST types, while the opposite was
true of the wizards. These tendencies were much more
pronounced in the API study than the debugging study;
wizards in the API study used INFORM acts nearly twice
as frequently as wizards in the debugging study, and pro-
grammers used ELICIT-INFORM acts more than twice as
frequently. Other notable differences include the relative
lack of ASSESS and OFFER act types in the API corpus
compared to the other corpora.

The distribution of illocutionary dialogue act types in
the API corpus is highly imbalanced, even when compared
to that of the other Wizard of Oz corpus in the software
engineering domain. This imbalance has a few implications
for researchers looking to build an intelligent virtual as-
sistant for API usage. On one hand, it is more difficult to
train robust dialogue act models on skewed datasets [95].
For instance, a classifier trained on this corpus would be
unlikely to correctly identify an utterance of the OFFER
type, as it would have been exposed to very few training
instances of that type. Researchers have previously used
techniques such as downsampling [95], oversampling, and
SMOTE [11] to counteract the effects of imbalanced data in
dialogue act modeling, but these solutions are typically poor
replacements for real data. In terms of dialogue strategy

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 16

0.45
B Programmers

0.4
B Wizards
035
03
3 025
c
g
3 02
8 _—
& 015
0.1
0.05 I |
. a .ol M1} I
5 & O &L S QA > & Q& S &
& &3« & é\g@ &é& @Q@ &5\ <\‘3§ ng% y‘é ®@ N
& N\ » N
& S \\\Q,o & é\O AR S & &
<<§ <<\5é

Fig. 4. Frequencies of API dialogue act types in the corpus.

0.55
0.5

W Programmers
0.45
W Wizards
0.4
0.35
g 03
[
S 025
o
o
s 02
0.15
0.1
0.05 I T
0 - [— . . ‘ |
O & Q A & <«
A I P SR I
S S F & & ¢ ¢
S o & R] S

Fig. 5. Frequencies of backward-facing dialogue act types in the corpus.

training, this imbalance may reduce the fidelity of a sim-
ulated learning environment, ultimately leaving a virtual
assistant under-equipped to handle certain dialogue states.

On the other hand, this imbalance means that virtual
assistant designers can narrow the range of interaction types
supported by a virtual assistant for API usage while still
providing the desired functionality. Because a few key illo-
cutionary dialogue act types account for the vast majority
of turns, virtual assistant designers may choose to focus on
those types and group the rest into the OTHER category.
Doing so would inevitably reduce the expressiveness of the
dialogue system, but it would ultimately be easier to train
due to the constrained state and action space [13].

6.2 RQ2: API Dialogue Act Types

The overwhelming majority of interactions related directly
to the API usage task. We annotated 2668 utterances with
API dialogue act types across 1741 messages; 89% of pro-
grammers’ messages and 90% of wizards’ messages were
labeled with at least one API dialogue act type. Figure 4
shows the composition of the corpus in terms of API dia-
logue act labels.

The dialogues focused heavily on three API informa-
tion types: PATTERNS, FUNCTIONALITY, and BASIC. Pro-
grammers most frequently asked for information about

PATTERNS (accounting for over 40% of their utterances),
describing how to accomplish a specific objective with the
API, followed by queries about BASIC information and
FUNCTIONALITY details. Wizards referenced the same
three API types most frequently, but the distribution dif-
fered: BASIC information was present in about 30% of the
wizards’ utterances, FUNCTIONALITY in about 25%, and
PATTERNS in about 20%.

Wizards and programmers both used all twelve API dia-
logue act types. However, five types occurred three or fewer
times across all programmer utterances: PURPOSE, REF-
ERENCES, CONTROL, QUALITY, and ENVIRONMENT.
These were also the least-frequently-occurring types in wiz-
ard utterances.

Again, we observe an imbalanced distribution of API
dialogue act types. This imbalance presents researchers with
challenges and opportunities similar to those discussed in
RQ1. Specifically, while it would be difficult to train some
ML models on this skewed dataset, virtual assistant design-
ers may choose to provide functionality for only a subset of
the most common API dialogue act types. We discuss these
implications in greater detail in Section 7.

6.3 RQ3: Backward-Facing Dialogue Act Types

Programmer-wizard interactions frequently took place in
the context of previous utterances.

Figure 5 shows the distribution of backwards-facing dia-
logue act types. The majority of the programmers” dialogue
acts were assigned either the [NONE] label (meaning they
did not have a direct relationship to any previous utterance)
or the FOLLOW-UP label. The PARTIAL, NEGATIVE, and
UNCLEAR tags saw minimal use by the programmers.
The majority of the wizards’ dialogue acts were assigned
the CONTINUE label, primarily due to the segmentation
method used for verbatim chunks of documentation. The
next most frequent label was POSITIVE, and the least fre-
quent labels were [NONE] and REPEAT.

Wizards often relied on previous conversational context
to produce an appropriate response. The following excerpt
demonstrates one such situation:

PRO: Apiza, what is the command to create a new
ssh_session in the libssh API?

Wiz: The command to create a new ssh session is:
ssh_session ssh_new(void) [...] Returns A new
ssh_session pointer, NULL on error.

PRO: Just to confirm, is the ssh_session type a
pointer type?

WIZ: ssh_session is not a pointer type.

PRO: But when you gave me the command to create
a new ssh session, you said it “Returns A new
ssh_session pointer...”. I'm confused.

WIZ: ssh_new returns a pointer to type ssh_session

In that exchange, the wizard needed to recall the context
of the method ssh_new as well as the question “is the
ssh_session type a pointer type” in order to rectify the pro-
grammer’s confusion. Furthermore, programmers did not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 17

TABLE 4
Number of references to specific APl components in the corpus. 338
components in the libssh APl and 1038 in the Allegro API were
available as traceability labels.

Library Variable Programmer Wizard Both
libssh % Messages w/ labels 60.4 79.6 69.6
Labels 358 1007 1365

Distinct labels 37 59 59

Alleero % Messages w/ labels 47.0 77.1 62.2
80 # Labels 240 801 1041

Distinct labels 54 86 86

Both % Messages w/ labels 54.3 78.4 66.1
Labels 598 1808 2406

Distinct labels 91 145 145

necessarily respond to the wizard’s most recent message;
16% of programmers’ backward-facing dialogue acts were
related older to messages in the conversation.

6.4 RQ4: Traceability

In total, we identified 145 specific API components dis-
cussed across 2221 utterances. The total number of API
component labels and number of unique component labels
annotated are shown in Table 4.

The wizards referred to specific API components more
often than the programmers. This trend can be viewed in
the context of the dialogue pattern observed in Section 4.1
and the dialogue act type distributions for the other dimen-
sions; specifically, programmers often elicited information
about known components or used descriptions of desired
API functionality to elicit recommendations, and wizards
responded with information about specific components. We
observe that a minority of programmer’s utterances labeled
with the ELICIT-OFFER-OR-SUGGESTION illocutionary di-
alogue act type (39%) are labeled with a traceability label,
while the majority of wizard utterances labeled with the
SUGGEST type (85%) do contain a traceability label. Mean-
while, a majority of programmer utterances labeled with
the ELICIT-INFORM illocutionary type (70%) have at least
one traceability label (i.e. target a specific API component),
and most wizard utterances labeled with the INFORM type
(87%) have traceability labels.

We also observe that more traceability labels were ap-
plied to utterances in the libssh scenario (particularly in
programmer utterances), while a broader range of distinct
labels were applied to utterances in the Allegro scenario.
There are many factors that may have affected these trends,
including the design, domain, and size of the different APIs,
the tasks given in the different scenarios, and individual
differences among wizards and programmers.

7 DisSCUSSION

This section summarizes several key insights from our
study and provides specific recommendations for future
researchers and virtual assistant developers.

7.1 Insights

We synthesize the following insights from observations of
the Wizard of Oz experiments and dialogue act annotations
in the context of the broader research landscape.

7.1.1 Value of the Wizard of Oz Methodology

We support the use of the Wizard of Oz methodology to
collect dialogues in which programmers and wizards exhibit
a broad range of realistic behaviors and strategies. In these
experiments, the dialogues were dense with API-related
interactions; over 90% of programmers’ messages were di-
rectly related to some aspect of the API. The rest were
either related to dialogue control (e.g., salutations, stalling,
expressing gratitude), served other task-related ends (e.g.,
questions related to C syntax) or intended to probe the
system’s capabilities (e.g., “It was hot here today. How is
the weather where you are?”). As we noted in Section 4.4,
even these interactions are valuable to observe, as they
are expositive of programmers’ expectations for the target
system, and should be considered when deciding on the
scope of a virtual assistant’s functionality.

We note that most Wizard of Oz experiments do not
include a control condition where users are aware that
the system is actually operated by another human, as it
is already well-established in the literature that humans
interact with machines differently than they do with other
humans. However, as virtual assistants become increasingly
intelligent and humans become more accustomed to inter-
acting with them, these differences may begin to shrink,
tempering the need for the Wizard of Oz deception.

7.1.2

We can broadly characterize the typical interactions be-
tween programmers and wizards in the experiments by
considering the four dialogue act dimensions annotated
in Section 5 and Section 6. We observe that programmers
in our study primarily began interactions (i.e. chains of
utterances linked by backward-facing dialogue act types)
by eliciting information or suggestions from the wizards.
These questions most frequently related to five types of API
information: patterns (e.g., “what functions should I use to
bring about a specific outcome?”), basic (e.g., “what is this
function’s return type?”), functionality (e.g., “what does this
function do?”), structure (e.g., “what functions are related
to this one?”), and examples (e.g., “show me an example
invocation of this function.”). We noted that the majority
of programmer utterances that began interactions contained
no traceability links to specific API components, while the
majority of immediate wizard responses did.

Taken together, while the wizards in our study engaged
in a variety of API-related interactions, we found that the
majority revolved around identifying the appropriate API
components to bring about specific outcomes. We identify
five distinct phases in this process: 1) the programmer
explaining his/her requirements and/or specifying the type
of information requested, 2) the wizard verifying those
requirements, 3) the wizard providing one or more informa-
tion items, 4) the user asking questions about those items,
and 5) the wizard answering those questions.

The preponderance of this interaction pattern is due,
at least in part, to the specific scenarios implemented in
this study; had programmers been performing maintenance
tasks, there may have been fewer questions about imple-
menting new patterns and more about understanding exist-
ing code. Similarly, had the programmers been granted open

Interactions Between Programmers and Wizards

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 18

access to other documentation resources, they likely would
have asked fewer questions geared toward, e.g., basic API
information.

7.1.3 Positive and Negative Programmer Experiences

We identified a few specific traits in the simulated virtual
assistant that programmers appeared to view positively,
and a few that they viewed negatively. First, we observed
that programmers did not like relying solely on Apiza
for API information. By and large, the developers in this
study expressed frustration that they were forbidden from
accessing typical documentation. While some programmers
acknowledged that they were just “used to” traditional
documentation, they also cited several specific grievances,
including the slow response speed, the inability to easily
follow links to other components or obtain a high-level
view of the API structure, and the fact that responses were
sometimes irrelevant, incorrect, or inadequate.

Second, we observed that programmers remarked posi-
tively on the more “intelligent” features exhibited by Apiza.
In particular, many were impressed by Apiza’s ability
to provide context-specific recommendations and synthe-
size information when the documentation was incomplete.
While the programmers were frustrated with how Apiza
communicated information, they were impressed by its
ability to determine what to communicate. One programmer
described how “[it] was very cool how perfectly Apiza
understood what I wanted to know and even offered code
samples.” Another programmer expressed, “I would say
that an Al would come in handy when I don’t actually know
what I want or what to do. Or rather, the only times that I
could see myself using it would be times that I usually try
to ask a person.”

Third, many programmers in our study shared a key
complaint about the simulated virtual assistant: it was too
slow. As one programmer summarized, “the speed was by
far the most frustrating part.” A real VA has an advantage
over a human wizard, in that it can rapidly search through
large amounts of data; however, features that involve ac-
cessing online resources or running neural models may
cause severe delays. Virtual assistant developers will have to
balance the desire to include sophisticated features against
the need for the system to generate a speedy response.

7.1.4 Additional Considerations

We present some final considerations for researchers and
virtual assistant developers as they pursue this research
direction. First, they should consider that many IDEs incor-
porate advanced features, such as autocompleting function
names and displaying information regarding parameters
and return types. In cases where those features are already
available within an IDE, they may be of lesser value in a
virtual assistant; this may affect decisions regarding which
dialogue actions should be made available to the system.
At the same time, if developers are targeting specialized ap-
plications or user types for which accessibility to other IDE
features may be limited, it may be sensible to include such
features in a virtual assistant even if they are redundant.
Second, researchers and virtual assistant developers
should consider different ways in which online resources

may be incorporated by a virtual assistant. In our stud-
ies, wizards occasionally directed programmers to websites
related to the programmers’ queries. We also frequently
observed wizards struggle to determine how to help the
programmers implement certain design patterns; in many of
those cases, the wizards could have easily found the answer
by searching the internet. A virtual assistant can take ad-
vantage of the huge amount of API information available on
question-answering websites like StackOverflow, in projects
hosted on sites like GitHub, and in tutorials around the web.

Third, researchers and virtual assistant developers will
have to make a number of important decisions when imple-
menting a user interface (Ul). In particular, the input and
output modalities are likely to have a strong impact on
the overall usability of the system. The programmers and
wizards in our experiments communicated solely through a
text-based interface, but there are several alternative forms
of input (such as voice and mouse/touchscreen input) and
output (such as computer speech and automatic navigation
to relevant documentation/resources) that we did not ex-
plore. The text-based system was ideal for this study, as it
did not restrict the types of questions or information that
either party could share. However, it did limit the quantity
of information a wizard could reasonably share in a single
turn, and many users found it inconvenient compared to
standard documentation navigation. Future researchers and
developers should consider a broad range of suitable Uls,
and their effects on usability.

7.2 Recommendations

Following the framework described in Section 2.3, devel-
opers may use the data from this study to create dialogue
strategies for a virtual assistant for API usage via rein-
forcement learning. Here, we discuss the next steps in this
process and give specific recommendations regarding the
application of the Wizard of Oz data.

1) Considering Core Functionality.

Virtual assistant developers must first decide on the
core functionality they would like their systems to exhibit.
The wizards in our study performed a number of distinct
activities: they helped users identify relevant API compo-
nents, they answered questions about those components,
they fetched code examples from the source code and on-
line resources, and more. Choosing the particular task(s) a
virtual assistant should be able to complete will guide the
rest of its development.

To make this determination, developers should con-
sider the programmer behaviors and interaction patterns
observed in this study, as well as research from the broader
software engineering field. Below, we give examples geared
toward the development of dialogue strategies specifically
designed for the task of identifying API components that
fulfill users” information needs (similar to the frequent in-
teraction pattern described in 7.1.2).

2) Identifying system and user actions.

After determining the core functionality of the target
system, developers must establish the sets of dialogue ac-
tions to be made available to the system and the user.
These action sets are directly informed by the desired system

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 19

functionality, and must reflect decisions that the system will
need to make to enable sufficiently complex dialogue.

As mentioned in Section 2.2, the process of determining
appropriate action sets can be expedited by utilizing the
data presented in this study. In short, this process involves
first identifying all utterances that may be related to the
target functionality. In the hypothetical system to recom-
mend API components, developers might begin by looking
at user utterances of the ELICIT-OFFER-OR-SUGGESTION
illocutionary type with the PATTERNS label in the API di-
mension (as these utterances are largely associated with the
target functionality), and then collecting all utterances that
connect to these via backward-facing dialogue act types.

Next, the developers would look at the combinations
of dialogue act types that occur across all four dimen-
sions in this subset of utterances, and attempt to group
together all combinations that relate to target functionality.
For example, while some user utterances of the ELICIT-
OFFER-OR-SUGGESTION type do not contain traceability
labels, others reference specific API components that the
user believes are related to the desired functionality. The
developers may choose to account for this observed behav-
ior by implementing two specific search methods: one that
uses a simple keyword query, and one that considers direct
structural links between API components in addition to a
keyword query. Therefore, the developers could assign a
new “BASIC-QUERY” label to the first dialogue act com-
bination, and a “RELATED-QUERY” to the second (as well
as matching “BASIC-SEARCH” and “RELATED-SEARCH”
labels for corresponding system actions).

At this point, it may become apparent that certain ob-
served or desired functionality cannot be derived from the
existing annotations with a sufficient level of granularity.
For instance, in a virtual assistant that suggests relevant
functions, it may be important to differentiate between
actions in which the user elicits all relevant functions and
those in which the user elicits the most relevant function. In
the current annotation scheme, both of these would simply
be labeled with the ELICIT-OFFER-OR-SUGGESTION illo-
cutionary dialogue act type, but based on their observations,
the developers may decide to use separate “QUERY-ALL”
and “QUERY-BEST” labels.

Ultimately, the developers should be able to assign ac-
tions from the system and user action sets to all relevant
utterances in the corpus, as the annotated corpus will later
be used to build a simulated learning environment.

3) Narrowing down the state space.

The “dialogue state” refers to a reinforcement learning
agent’s beliefs and view of its environment, and the “state
space” is the set of all possible states. The state space
is defined by a set of features, and each individual state
corresponds to a particular set of values for those features.
Choosing an appropriate, narrow set of features for the state
space facilitates the learning process by enabling informed
decision-making.

Virtual assistant developers can use an annotated corpus
to identify which task- and dialogue-specific features actu-
ally influenced the wizards’ dialogue strategies, in order to
determine which ones to include in the state space. To do
so, they must first generate a set of candidate state space

features, and then prune down the most useful ones. Reiser
and Lemon [13] demonstrate how, for candidate features
that are readily observable in the corpus, this can be done by
determining which features are most predictive of wizard’s
dialogue acts.

Candidate features to be included in the state space
for the target API virtual assistant include dialogue length,
how many questions the user has asked, whether the user
has repeated the current question, the previous user and
system actions, whether a specific API component has been
identified, the number of components in the API that appear
to be relevant to a user’s query and how relevant those
components appear to be, the number of web resources
that appear to be relevant to a user’s query and how
relevant those appear to be, a belief about the user’s ongoing
programming activity (bugfixing, refactoring, implementing
a new method, etc.), whether the user’s request has been
satisfied, and many more.

4) Building a Simulated Learning Environment.

Once the action sets and state space are established, the
next step is to create a model that represents the simulated
environment and dictates how different actions lead to
different states. In the context of reinforcement learning for
dialogue strategy, the primary component of this model
is referred to as a “user simulator.” The user simulator
emulates how a user would react to the system’s action at a
given point in a dialogue. In many ways, the user simulator
can be just as complex as the agent it is used to train; it
has its own set of actions, goals, and constraints that can
change over the course of a dialogue. It is common for the
user simulator to use manually crafted heuristics to update
its goals and constraints and to use supervised machine
learning to choose an appropriate action. More rules are
then needed to define how the agent’s state changes in
response to the simulated user’s action.

Rieser and Lemon [13] demonstrate a fairly straightfor-
ward user simulator that keeps track of whether the agent
has completed certain tasks and uses a simple bigram model
(trained on labeled Wizard of Oz data) to generate user
actions. Once again, a virtual assistant developer should
consider the interactions that took place in the real Wizard of
Oz dialogues and determine how sophisticated a user simu-
lator needs to be for a particular application. For instance, a
simple user simulator designed to train a virtual assistant to
identify relevant API components may choose a target func-
tion and then ask questions and provide information related
to that function. But the developer may also want the virtual
assistant to account for scenarios in which the user asks for
a component that does not exist, or scenarios in which the
user initially wants a certain component, but is satisfied by a
similar component. Any desired functionality in the virtual
assistant must be reflected in the user simulator.

5) Defining the reward function.

The reward function enables the reinforcement learning
agent to learn optimal strategies by assigning point values to
specific actions and outcomes to encourage and discourage
certain behaviors. For example, agents are usually penalized
a small amount for each turn in a task-oriented dialogue to
encourage them to complete the task as quickly as possible.
They are also generally rewarded or penalized depending

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020 20

upon whether they complete their task within a specified
number of time steps. However, in the context of task-
oriented dialogues, there are other behaviors that a virtual
assistant developer may wish to discourage; for instance,
users may not like it if the virtual assistant shares too much
information in a single dialogue turn, even though doing
so might increase the likelihood of the agent completing its
task. Developers must decide which dialogue features to
include in the reward function, and how to balance them.

While this task can be somewhat reliant on trial and
error, Reiser and Lemon [13] suggest using Wizard of Oz
studies to help define a reward function by looking at the
correlation between dialogue features and the experimental
performance metrics. For instance, they demonstrate how
linear regression can sometimes be used to estimate the
effect of dialogue length on user satisfaction. It can also
be a useful diagnostic tool to determine which features
not to include in the reward function (i.e. those with little
correlation to the metrics).

In the context of the present study, future developers
may want to consider how well features like interaction
length, specific dialogue act types, and progress towards
goal completion correlate with the observed task completion
rates (Section 4.2) and user satisfaction ratings (Section 4.3),
but they should remain mindful that these correlations
may be confounded by other, uncontrolled factors in the
experiments.

8 CONCLUSION

Virtual assistants for programmers have not been widely
researched, despite recent advancements in virtual assistant
technology and calls for more intelligent tools in software
engineering. This is largely due to the lack of publicly-
available datasets that can be used to understand which
programming tasks would be high-value targets for virtual
assistants and to train task-specific dialogue systems.

In this paper we laid the groundwork for a virtual
assistant for API usage. First, we presented the methodol-
ogy and results of Wizard of Oz experiments designed to
simulate interactions between a programmer and a virtual
assistant for API usage. Then, we annotated the dialogue
acts in the programmer-wizard interactions along four di-
mensions: illocutionary dialogue act type, API dialogue act
type, backward-facing dialogue act type, and traceability.
Finally, we discussed the implications of our study on future
virtual assistant development.

We have made all data related to the experimental
design, experimental results, and dialogue act annotations
available via an online Appendix:

https:/ / github.com/ApizaCorpus/ApizaCorpus

APPENDIX A

Tables 5 and 6 summarize all responses to the entry surveys
completed by participants in the API Wizard of Oz study.
All entry surveys and responses are given in the online
Appendix.

APPENDIX B

All illocutionary, API, and backward-facing dialogue act
types are listed in Tables 7, 8, and 9, respectively. A descrip-
tion is given for each dialogue act type, as is an example
utterance from the Wizard-of-Oz API usage corpus. The
complete sets of API component labels for the traceability
dimension are available in the online Appendix in the
traceability_labels/ folder.

ACKNOWLEDGMENTS

The authors would like to sincerely thank the participants
in the Wizard of Oz experiments, as well as the anonymous
reviewers whose reccomendations have greatly improved
the manuscript.

REFERENCES

[1] R.S. Cooper, J. E. McElroy, W. Rolandi, D. Sanders, R. M. Ulmer,
and E. Peebles, “Personal virtual assistant,” Jun. 29 2004, uS Patent
6,757,362.

[2] R.W.White, “Skill discovery in virtual assistants,” Communications
of the ACM, vol. 61, no. 11, pp. 106-113, 2018.

[3] E A.Brown, M. G. Lawrence, and V. O. Morrison, “Conversational
virtual healthcare assistant,” Nov. 21 2017, uS Patent 9,824,188.

[4] Z. Lv and X. Li, “Virtual reality assistant technology for learn-
ing primary geography,” in International Conference on Web-Based
Learning. Springer, 2015, pp. 31-40.

[5] H. He, D. Chen, A. Balakrishnan, and P. Liang, “Decoupling
strategy and generation in negotiation dialogues,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 2333-2343.

[6] S. Whittaker, M. A. Walker, and]J. D. Moore, “Fish or fowl: A
wizard of oz evaluation of dialogue strategies in the restaurant
domain.” in LREC, 2002.

[7] B.Schmidt, R. Borrison, A. Cohen, M. Dix, M. Girtler, M. Hollen-
der, B. Klopper, S. Maczey, and S. Siddharthan, “Industrial virtual
assistants: Challenges and opportunities,” in Proceedings of the 2018
ACM International Joint Conference and 2018 International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers.
ACM, 2018, pp. 794-801.

[8] B. Boehm, “A view of 20th and 21st century software engineer-
ing,” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 12-29.

[9] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro,
N. Ernst, M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vasquez
et al., “On-demand developer documentation,” in Software Mainte-
nance and Evolution (ICSME), 2017 IEEE International Conference on.
IEEE, 2017, pp. 479-483.

[10] L. V. Serban, R. Lowe, P. Henderson, L. Charlin, and]. Pineau,
“A survey of available corpora for building data-driven dialogue
systems,” CoRR, vol. abs/1512.05742, 2015. [Online]. Available:
http:/ /arxiv.org/abs/1512.05742

[11] A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting
speech act types in developer question/answer conversations
during bug repair,” in Proc. of the 26th ACM Symposium on the
Foundations of Software Engineering, 2018.

[12] J. Howison and J. D. Herbsleb, “Scientific software production:
Incentives and collaboration,” in Proceedings of the ACM 2011
Conference on Computer Supported Cooperative Work, ser. CSCW "11.
New York, NY, USA: ACM, 2011, pp. 513-522. [Online]. Available:
http:/ /doi.acm.org/10.1145/1958824.1958904

[13] V. Rieser and O. Lemon, Reinforcement learning for adaptive dialogue
systems: a data-driven methodology for dialogue management and natu-
ral language generation. Springer Science & Business Media, 2011.

[14] N. Dahlbdck, A. Jonsson, and L. Ahrenberg, “Wizard of oz stud-
ies—why and how,” Knowledge-based systems, vol. 6, no. 4, pp. 258—
266, 1993.

[15] K. Bach and R. Harnish, “Linguistic communication and speech
acts,” 1979.

[16] M. P. Robillard, “What makes apis hard to learn? answers from
developers,” IEEE software, vol. 26, no. 6, pp. 27-34, 2009.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020

TABLE 5

21

Summary of the entry surveys for programmers in the API Wizard of Oz study. Two programmers in the libssh scenario and one in the Allegro
scenario did not submit responses to the survey, and one in the Allegro scenario did not report familiarity with the APl domain. Note that the survey
questions relating to regular C use and native language were only asked of programmers in the Allegro scenario. Additionally, programmers in the
Allegro scenario were asked to provide an exact number of years for questions regarding programming experience, while those in the libssh study
were asked to select from the ranges in the table.

Programmers

Survey Topic Survey Response libssh Scenario Allegro Scenario
<2 Years 1 0
Programming Experience (Any Language) 2-10 Years 7 5
>10 Years 5 9
<2 Years 7 2
Programming Experience (C Language) 2-10 Years 5 6
>10 Years 1 6
Novice 6 11
Familiarity with API Domain Intermediate 7 1
Expert 0 1
Yes N/A 9
Uses C Regularly No N/A 5
. English N/A 8
Native Language Other N/A 6
TABLE 6

Summary of the wizards’ programming experience and scenario participation in the APl Wizard of Oz study.

Wizard ID Programming Experience) # Sessions)
Any Language C Language libssh Scenario Allegro Scenario
1 2-10 Years 2-10 Years 6 4
2 2-10 Years 2-10 Years 3 2
3 2-10 Years <2 Years 2 3
4 2-10 Years <2 Years 3 3
5 2-10 Years <2 Years 1 0
6 2-10 Years 2-10 Years 0 3
TABLE 7

Description of 12 lllocutionary dialogue act types derived from the AMI Meeting Corpus [19]. We have excluded three dialogue act types from the
original annotation scheme (“STALL’, “FRAGMENT”, and “BACKCHANNEL") that were not relevant for written communication.

Dialogue Act Type Description Example Utterance
INFORM A statement intended to convey information to the ~ Programmer: al_get_keyboard is failing with “As-
other speaker. sertion ‘new_keyboard_driver’ failed”.
ELICIT-INFORM A request for the other speaker to share information. ~ Programmer: Can I pass ssh_connect a hostname?
ASSESS An evaluation of something that is being discussed. = Wizard: Great!
ELICIT-ASSESSMENT A request for the other speaker to evaluate some- Wizard: Does this look useful?
thing that has been said or done so far.
OFFER An act in which the speaker expresses an intention =~ Programmer: Well I'll do an experiment and let you

BE-POSITIVE

BE-NEGATIVE

SUGGEST

ELICIT-OFFER-OR-
SUGGESTION

COMMENT-ABOUT-
UNDERSTANDING

ELICIT-COMMENT-ABOUT-

UNDERSTANDING
OTHER

relating to possible actions that he or she may take.

Any act that is intended to express positive feelings
toward the other speaker.

Any act that is intended to express negative feelings
toward the other speaker.

An act in which the speaker expresses an intention
relating to possible actions that the other speaker
may take.

An act in which the speaker expresses a desire for
the other speaker to make an offer or suggestion

A comment indicating whether or not the speaker
understood a previous utterance.

A request for the other speaker to indicate whether
or not he or she understood a previous utterance.
A “bucket” class for other speaker intentions, such
as stalls, text fragments, and unclear intentions.

know
Programmer: Thanks for your help today.

[N/A]

Wizard: To install a keyboard driver, use al_install_-
keyboard.

Programmer: How do I register key events?
Wizard: I don’t understand your question
Programmer: Apiza are you there

Wizard: one second, parsing source code...

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020

TABLE 8

22

Description of 12 API dialogue act types derived from the APl knowledge taxonomy [20]. We have added a “BASIC” label in place of a
“NON-INFORMATION” label.

Dialogue Act Type Description Example Utterance

FUNCTIONALITY What the API does in terms of functionality, including Programmer: why would al_load_sample crash?
description of parameters, return values, and exceptions.

CONCEPTS The meaning of terms used to name or describe an API ~ Programmer: what is the x y orientation of the display
element, or design or domain concepts used or implemented
by the APL

DIRECTIVES Information relating to what users are allowed/not allowed ~ Wizard: al_install_audio must have been called first.
to do with the API element. Directives are clear contracts.

PURPOSE The purpose of providing an element or the rationale of a ~ Wizard: An ALLEGRO_COLOR structure describes a
certain design decision. color in a device independent way.

QUALITY Quality attributes of the API, also known as non- Wizard: Playback may fail because all the reserved sample
functional requirements, including the performance impli- instances are currently used.
cations and information about the API’s internal implemen-
tation that is indirectly related to its observable behavior.

CONTROL How the API (or the framework) manages the flow of Programmer: when a user presses a key, is a corresponding
control. For example, what events cause a certain callback event placed in the event queue?
to be triggered, or the order in which API methods will be
automatically called by the framework itself.

STRUCTURE The internal organization of a compound element (e.g. Wizard: Members include acceptForward(int timeout_-
important classes, fields, or methods), information about ms), connect(), disconnect(), getAuthList()...
type hierarchies, or how elements are related to each other.

PATTERNS How to accomplish specific outcomes with the API, for ~Wizard: To send an end of file on the channel, use ssh_-
example, how to implement a certain scenario, how the channel_send_eof
behavior of an element can be customized, etc.

EXAMPLES Code examples demonstrating how to use and combine Programmer: can you give me an example of ssh_chan-
elements to implement certain functionality or design nel _read
outcomes

ENVIRONMENT Aspects related to the environment in which the APl is Programmer: When was libssh Version 1.x released?
used, but not the API directly, e.g., compatibility issues,
differences between versions, or licensing information.

REFERENCES Any pointer to external documents or mentions of other =~ Programmer: website of libssh documentary
documents (such as standards or manuals). Note that
this tag does not account for internal API references (i.e.
references to other API components).

BASIC “Boilerplate” information such as component names, re- Programmer: Can I have more information about the
turn types, and parameters, as well as broad requests for =~ ALLEGRO_KEYBOARD_EVENT object?
information relating to certain API components.

[17] E. Duala-Ekoko and M. P. Robillard, “Asking and answering “Wizard of oz support throughout an iterative design process,”

(18]

[19]

[20]

[21]

[22]

(23]

[24]

questions about unfamiliar apis: An exploratory study,” in 2012
34th International Conference on Software Engineering (ICSE). 1EEE,
2012, pp. 266-276.

S. Mealin and E. Murphy-Hill, “An exploratory study of blind
software developers,” in 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 2012, pp. 71-74.
I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourban, M. Flynn,
M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos et al., “The ami
meeting corpus,” in Proceedings of the 5th International Conference
on Methods and Techniques in Behavioral Research, vol. 88, 2005, p.
100.

W. Maalej and M. P. Robillard, “Patterns of knowledge in api ref-
erence documentation,” IEEE Transactions on Software Engineering,
vol. 39, no. 9, pp. 1264-1282, 2013.

N. O. Bernsen, H. Dybkjeer, and L. Dybkjer, “Wizard of
oz prototyping: How and when,” Roskilde Univ. Centre for
Cognitive Science, Roskilde, Denmark, Tech. Rep. WPCS-94-
1, 1994. [Online]. Available: http://www.spokendialogue.dk/
Publications/1994i/WPCS-94-1-10.2.94.pdf

L. D. Riek, “Wizard of oz studies in hri: a systematic review
and new reporting guidelines,” Journal of Human-Robot Interaction,
vol. 1, no. 1, pp. 119-136, 2012.

A. Green, H. Huttenrauch, and K. S. Eklundh, “Applying the
wizard-of-oz framework to cooperative service discovery and
configuration,” in RO-MAN 2004. 13th IEEE International Work-
shop on Robot and Human Interactive Communication (IEEE Catalog
No.04TH8759), Sep. 2004, pp. 575-580.

S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. D. Bolter, and M. Gandy,

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

IEEE Pervasive Computing, vol. 4, no. 4, pp. 18-26, 2005.

S. Atefi, A. Truelove, M. Rheinschmitt, E. Almeida, I. Ahmed, and
A. Alipour, “Examining user reviews of conversational systems:
a case study of alexa skills,” CoRR, vol. abs/2003.00919, 2020.
[Online]. Available: https:/ /arxiv.org/abs/2003.00919

G. Daniel,]J. Cabot, L. Deruelle, and M. Derras, “Xatkit: a multi-
modal low-code chatbot development framework,” IEEE Access,
vol. 8, pp. 15332-15 346, 2020.

E. Okur, S. H. Kumar, S. Sahay, A. A. Esme, and L. Nachman,
“Natural language interactions in autonomous vehicles: Intent
detection and slot filling from passenger utterances,” CoRR, vol.
abs/1904.10500, 2019. [Online]. Available: http:/ /arxiv.org/abs/
1904.10500

K. Scheffler and S. Young, “Automatic learning of dialogue strat-
egy using dialogue simulation and reinforcement learning,” in
Proceedings of the second international conference on Human Language
Technology Research. Citeseer, 2002, pp. 12-19.

J. D. Williams and S. Young, “Using wizard-of-oz simulations
to bootstrap reinforcement-learning based dialog management
systems,” in Proceedings of the Fourth SIGdial Workshop of Discourse
and Dialogue, 2003, pp. 135-139.

N. Reithinger and M. Klesen, “Dialogue act classification using
language models,” in Fifth European Conference on Speech Comimu-
nication and Technology, 1997.

A. Popescu-Belis, “Dialogue acts: One or more dimensions,”
ISSCO WorkingPaper, vol. 62, 2005.

M. G. Core and]. Allen, “Coding dialogs with the damsl anno-
tation scheme,” in AAAI fall symposium on communicative action in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020

TABLE 9

23

Description of 7 backward-facing dialogue act types derived from the AMI Meeting Corpus [19]. We have added three labels to the original set to
account for frequent inter-utterance relationships that occurred in the context of written API dialogues: CONTINUE, REPEAT, and FOLLOW-UP.

Dialogue Act Type

Description

Example Utterance

POSITIVE

NEGATIVE

PARTIAL

UNCLEAR

REPEAT

FOLLOW-UP

CONTINUE

An act that supports the intention of a prior utterance, for
instance, by reacting positively to it, accepting or agreeing
with it, indicating it has been understood, or providing
what the source is attempting to elicit.

An act rejecting a prior utterance, for instance, by pre-
senting an objection to it, countering the source with an
alternative the speaker prefers, or refusing to provide what
the source is attempting to elicit.

An act the partially supports a prior utterance, but rejects
it in some aspects, for instance by agreeing with part
of a suggestion or providing part of what the source is
attempting to elicit.

An act that expresses genuine uncertainty about a prior
utterance, for instance, by saying that speaker is unsure
whether or not a suggestion is a good idea or whether
some information is true, or by expressing an inability to
provide what the source is attempting to elicit

An act that repeats or rephrases a prior utterance by the
same speaker in order to, for instance, emphasize a point,
redirect the dialogue, ensure that the prior utterance was
successfully received, or repair a typo or other mistake.

An act that neither supports nor rejects a prior utterance,
but arises from information conveyed in that utterance, for
instance, by posing a follow-up question, or suggesting a
related topic.

An act that serves as a direct continuation of a prior
utterance, but has either been delivered in a separate
message or serves a role distinct from the prior utterance
(for instance, by elaborating on a previously-introduced

Wizard: To connect in libssh, you can use the function “int
ssh_connect(ssh_session session)”

Programmer (in response to a suggestion): I tried that

Programmer: tell the easiest one

Wizard: I am unsure

Programmer (after a previous utterance “How do I set the
hostname for an SSH session?”): How do I set a hostname
on an SSH session?

Programmer Just to confirm, is the ssh_session type a
pointer type?

Wizard (immediately after suggesting the function al_-
load_bitmap): ALLEGRO_BITMAP *al_load_bitmap(const
char *filename)

topic).

humans and machines, vol. 56, Boston, MA, 1997, pp. 28-35.

[33] H. Bunt, V. Petukhova, D. Traum, and]. Alexandersson, Dialogue
Act Annotation with the ISO 24617-2 Standard, 11 2017, pp. 109-135.

[34] H. Bunt, “The dit++ taxonomy for functional dialogue markup,”
in AAMAS 2009 Workshop, Towards a Standard Markup Language for
Embodied Dialogue Acts, 2009, pp. 13-24.

[35] M. Walker, R. J. Passonneau, and J. E. Boland, “Quantitative and
qualitative evaluation of darpa communicator spoken dialogue
systems,” in Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, 2001, pp. 515-522.

[36] G. Leech and M. Weisser, “Generic speech act annotation for task-
oriented dialogues,” in Proceedings of the corpus linguistics 2003
conference, vol. 16. Lancaster: Lancaster University, 2003, pp. 441-
446.

[37] S. Young, “Cued standard dialogue acts,” Dialogue Systems
Group, Eng. Dept., Cambridge Univ.,, Tech. Rep., Jun. 2009.
[Online]. Available: http://mi.eng.cam.ac.uk/research/dialogue/
papers/youn09.pdf

[38] L. E. Asri, H. Schulz, S. Sharma, J. Zumer,]J. Harris,
E. Fine, R. Mehrotra, and K. Suleman, “Frames: A corpus
for adding memory to goal-oriented dialogue systems,”
CoRR, vol. abs/1704.00057, 2017. [Online]. Available: http:
//arxiv.org/abs/1704.00057

[39] A. Clark and A. Popescu-Belis, “Multi-level dialogue act tags,” in
Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue at
HLT-NAACL 2004, 2004, pp. 163-170.

[40] G. Gao, E. Voichick, M. Ichinco, and C. Kelleher, “Exploring
programmers’ api learning processes: Collecting web resources as
external memory,” in 2020 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 2020, pp. 1-10.

[41] M. Meng, S. Steinhardt, and A. Schubert, “Application pro-
gramming interface documentation: what do software developers
want?” Journal of Technical Writing and Communication, vol. 48,
no. 3, pp. 295-330, 2018.

[42] C. Parnin and C. Treude, “Measuring api documentation on the
web,” in Proceedings of the 2nd international workshop on Web 2.0 for

”

software engineering, 2011, pp. 25-30.

[43] H. C. Jiau and F-P. Yang, “Facing up to the inequality of crowd-
sourced api documentation,” ACM SIGSOFT Software Engineering
Notes, vol. 37, no. 1, pp. 1-9, 2012.

[44] M. Meng, S. Steinhardt, and A. Schubert, “How developers use
api documentation: an observation study,” Communication Design
Quarterly Review, vol. 7, no. 2, pp. 40-49, 2019.

[45] H. Zhong and Z. Su, “Detecting api documentation errors,” in
Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications, 2013,
pp- 803-816.

[46] M. P. Robillard and R. Deline, “A field study of api learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp. 703
732, 2011.

[47] A.]. Ko and Y. Riche, “The role of conceptual knowledge in api
usability,” in 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 1IEEE, 2011, pp. 173-176.

[48] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api
usability,” in 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. TEEE, 2013, pp. 5-14.

[49] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online qé&a forum reliable?: a study of
api misuse on stack overflow,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). 1EEE, 2018, pp. 886-896.

[50] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini,
“A systematic evaluation of static api-misuse detectors,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1170-1188,
2018.

[51] C. De Roover, R. Lammel, and E. Pek, “Multi-dimensional explo-
ration of api usage,” in 2013 21st International Conference on Program
Comprehension (ICPC). 1EEE, 2013, pp. 152-161.

[52] C. Treude, M. Sicard, M. Klocke, and M. Robillard, “Tasknav: Task-
based navigation of software documentation,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 649-652.

[53] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020

[54]

[55]

[56]

(57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

and recommending api usage patterns,” in European Conference on
Object-Oriented Programming. Springer, 2009, pp. 318-343.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th international
conference on software engineering, 2016, pp. 404-415.

J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving api docu-
mentation using usage information,” in CHI'09 Extended Abstracts
on Human Factors in Computing Systems, 2009, pp. 4429-4434.

D. S. Eisenberg, J. Stylos, and B. A. Myers, “Apatite: A new inter-
face for exploring apis,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2010, pp. 1331-1334.

C. Treude and M. P. Robillard, “Augmenting api documentation
with insights from stack overflow,” in 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). 1EEE, 2016, pp.
392-403.

C. Chen and K. Zhang, “Who asked what: Integrating crowd-
sourced faqs into api documentation,” in Companion Proceedings
of the 36th International Conference on Software Engineering, 2014,
pp- 456-459.

S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api doc-
umentation,” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 643—-652.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for generat-
ing natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795-806.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 631-642.

R. P. Buse and W. Weimer, “Synthesizing api usage examples,” in
2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 782-792.

Y. Tian, F. Thung, A. Sharma, and D. Lo, “Apibot: Question
answering bot for api documentation,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 153-158.

A.]. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in Proceed-
ings of the SIGCHI conference on Human factors in computing systems.
ACM, 2004, pp. 151-158.

P. Pruski, S. Lohar, W. Goss, A. Rasin, and]. Cleland-Huang,
“Tigi: answering unstructured natural language trace queries,”
Requirements Engineering, vol. 20, no. 3, pp. 215-232, 2015.

N. C. Bradley, T. Fritz, and R. Holmes, “Context-aware conversa-
tional developer assistants,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 993-1003.

V. Arnaoudova, S. Haiduc, A. Marcus, and G. Antoniol, “The
use of text retrieval and natural language processing in software
engineering,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 2. 1EEE Press, 2015, pp. 949-950.

H. Ed-douibi, G. Daniel, and J. Cabot, “Openapi bot: A chatbot to
help you understand rest apis.”

C. B. Seaman, “Qualitative methods in empirical studies of
software engineering,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 557-572, July 1999.

D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of
software engineering: A roadmap,” in Proceedings of the Conference
on The Future of Software Engineering, ser. ICSE ’00. New
York, NY, USA: ACM, 2000, pp. 345-355. [Online]. Available:
http:/ /doi.acm.org/10.1145/336512.336586

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and]. Rosenberg, “Preliminary guidelines
for empirical research in software engineering,” IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp. 721-734, Aug 2002.

J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study of
feature location process: Distinct phases, recurring patterns, and
elementary actions,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM), Sep. 2011, pp. 213-222.

J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature
location practice with multi-faceted interactive exploration,” in
2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 762-771.

C. Benzmiiller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-
korbayovéd, M. Pinkal, J. Siekmann, D. Tsovaltzi, B. Q. Vo, and
M. Wolska, “A wizard-of-oz experiment for tutorial dialogues in

[75]

[76]

[77]

[78]

[79]

[80]

[81]

(82]

[83]

(84]

(85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

24

mathematics,” in In Proceedings of the AIED Workshop on Advanced
Technologies for Mathematics Education. Citeseer, 2003.

I. Kruijff-Korbayovd, T. Becker, N. Blaylock, C. Gerstenberger,
M. Kaisser, P. Poller, V. Rieser, and J. Schehl, “The sammie corpus
of multimodal dialogues with an mp3 player.” in LREC, 2006, pp.
2018-2023.

M. Hajdinjak and E. Miheli¢, “The paradise evaluation framework:
Issues and findings,” Computational Linguistics, vol. 32, no. 2, pp.
263-272, 2006.

L. A. Pineda, A. Massé, 1. Meza, M. Salas, E. Schwarz, E. Uraga,
and L. Villasefior, “The dime project,” in Mexican International
Conference on Artificial Intelligence. Springer, 2002, pp. 166-175.
N. Bertomeu, H. Uszkoreit, A. Frank, H.-U. Krieger, and B. Jorg,
“Contextual phenomena and thematic relations in database qa
dialogues: results from a wizard-of-oz experiment,” in Proceedings
of the Interactive Question Answering Workshop at HLT-NAACL 2006,
2006, pp. 1-8.

V. Rieser, I. Kruijff-Korbayové, and O. Lemon, “A corpus collection
and annotation framework for learning multimodal clarification
strategies,” in 6th SIGdial Workshop on DISCOURSE and DIA-
LOGUE, 2005.

C. Benzmiiller, H. Horacek, H. Lesourd, I. Kruijff-Korbayov4,
M. Schiller, and M. Wolska, “A corpus of tutorial dialogs on
theorem proving; the influence of the presentation of the study-
material,” in Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06), 2006.

M. M. Katsakioris, H. Hastie, I. Konstas, and A. Laskov, “Corpus of
multimodal interaction for collaborative planning,” in Proceedings
of the Combined Workshop on Spatial Language Understanding (SpLU)
and Grounded Communication for Robotics (RoboNLP), 2019, pp. 1-6.
Y. Kang, Y. Zhang,]J. K. Kummerfeld, L. Tang, and]J. Mars,
“Data collection for dialogue system: A startup perspective,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 3 (Industry Papers), vol. 3, 2018, pp. 33-40.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Transactions on Software Engineering, vol. 28, no. 10, pp. 970-
983, Oct 2002.

R. Gangadharaiah, B. Narayanaswamy, and C. Elkan, “What we
need to learn if we want to do and not just talk,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
3 (Industry Papers), vol. 3, 2018, pp. 25-32.

V. Stoyanov and C. Cardie, “Topic identification for fine-grained
opinion analysis,” in Proceedings of the 22nd International Conference
on Computational Linguistics-Volume 1. Association for Computa-
tional Linguistics, 2008, pp. 817-824.

J. Wiebe and E. Riloff, “Creating subjective and objective sentence
classifiers from unannotated texts,” in International conference on
intelligent text processing and computational linguistics. ~ Springer,
2005, pp. 486-497.

R. Witte, Q. Li, Y. Zhang, and]. Rilling, “Text mining and software
engineering: an integrated source code and document analysis
approach,” IET software, vol. 2, no. 1, pp. 3-16, 2008.

K. Krippendorff, “Agreement and information in the reliability of
coding,” Communication Methods and Measures, vol. 5, no. 2, pp.
93-112, 2011.

H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative
content analysis,” Qualitative health research, vol. 15, no. 9, pp.
1277-1288, 2005.

B. Downe-Wamboldt, “Content analysis: method, applications,
and issues,” Health care for women international, vol. 13, no. 3, pp.
313-321, 1992.

K. Krippendorff, “Reliability in content analysis,” Human commu-
nication research, vol. 30, no. 3, pp. 411-433, 2004.

R. Craggs and M. M. Wood, “Evaluating discourse and dialogue
coding schemes,” Computational Linguistics, vol. 31, no. 3, pp. 289—
296, 2005.

M. Bengtsson, “How to plan and perform a qualitative study
using content analysis,” NursingPlus Open, vol. 2, pp. 8 -
14, 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2352900816000029

W. Spooren and L. Degand, “Coding coherence relations: Relia-
bility and validity,” Corpus linguistics and linguistic theory, vol. 6,
no. 2, pp. 241-266, 2010.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2020

[95] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates,
D. Jurafsky, P. Taylor, R. Martin, C. V. Ess-Dykema, and
M. Meteer, “Dialogue act modeling for automatic tagging and
recognition of conversational speech,” Computational Linguistics,
vol. 26, no. 3, pp. 339-373, 2000. [Online]. Available: https:
//doi.org/10.1162/089120100561737

Zachary Eberhart is working toward the PhD
degree at the University of Notre Dame ad-
vised by Dr. Collin McMillan. His research is in
software engineering with a focus on human-
computer interaction, code reuse, and program
comprehension.

Aakash Bansal is working toward the PhD de-
gree at the University of Notre Dame advised by
Dr. Collin McMillan. His research is in software
engineering with a focus on source code sum-
marization and program comprehension.

Collin McMillan received the PhD degree from
the College of William & Mary, in 2012, focusing
on source code search and traceability technolo-
gies for program reuse and comprehension. He
is an associate professor with the University of
Notre Dame. Since joining Notre Dame, his work
has focused on source code summarization. His
work has been recognized with multiple best
paper and distinguished paper awards, and the
NSF CAREER award. He is a member of the
IEEE.

25

